Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-331-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-331-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ssNMRlib: a comprehensive library and tool box for acquisition of solid-state nuclear magnetic resonance experiments on Bruker spectrometers
Alicia Vallet
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
Adrien Favier
Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
Bernhard Brutscher
Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
Related authors
No articles found.
Lucky N. Kapoor, Natalia Ruzickova, Predrag Živadinović, Valentin Leitner, Maria Anna Sisak, Cecelia Mweka, Jeroen Dobbelaere, Georgios Katsaros, and Paul Schanda
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-9, https://doi.org/10.5194/mr-2025-9, 2025
Revised manuscript accepted for MR
Short summary
Short summary
By reviewing attendee lists of ten MR (magnetic resonance) meetings over the last year, we estimate the climate footprint of conferences and explore possibilities to reduce it. This manuscript will facilitate discussions about possible actions the community may take.
Bernhard Brutscher
Magn. Reson., 5, 131–142, https://doi.org/10.5194/mr-5-131-2024, https://doi.org/10.5194/mr-5-131-2024, 2024
Short summary
Short summary
We introduce the PRESERVE pulse sequence element, allowing variable flip-angle adjustment in 2D 1H–15N and 1H–13C transverse-relaxation-optimized-spectroscopy (TROSY)-type correlation experiments. PRESERVE-TROSY exploits a remarkable array of up to nine orthogonal polarization-coherence transfer pathways, showcasing the remarkable potential of spin manipulations achievable via the design and optimization of nuclear magnetic resonance (NMR) pulse sequences.
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024, https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Short summary
To characterize the amplitude of dynamic processes in molecules, anisotropic parameters can be measured using solid-state NMR. However, the timescales of motion that lead to such a scaling of the anisotropic interactions are not clear. Using numerical simulations in small spin systems, we could show that mostly the magnitude of the anisotropic interaction determines the range of timescales detected by the scaled anisotropic interaction, and experimental parameters play a very minor role.
Federico Napoli, Jia-Ying Guan, Charles-Adrien Arnaud, Pavel Macek, Hugo Fraga, Cécile Breyton, and Paul Schanda
Magn. Reson., 5, 33–49, https://doi.org/10.5194/mr-5-33-2024, https://doi.org/10.5194/mr-5-33-2024, 2024
Short summary
Short summary
Protons (1H) are useful reporters of protein structure and dynamics in solid-state NMR. However, 1H abundance is detrimental to the resolution of NMR spectra. Substituting 1H by deuterons has been an efficient strategy to improve spectral quality, but when the crucial backbone amide sites are not protonated, much information is loss. We propose a method to completely protonate the amide sites, while maintaining high-resolution information, which partially also extends to backbone alpha-1H.
Cited articles
Agarwal, V., Penzel, S., Szekely, K., Cadalbert, R., Testori, E., Oss, A., Past, J., Samoson, A., Ernst, M., Böckmann, A., and Meier, B. H.: De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy, Angew. Chem. Int. Ed., 53, 12253–12256, 2014. a, b
Andreas, L. B., Jaudzems, K., Stanek, J., Lalli, D., Bertarello, A., Le Marchand, T., Cala-De Paepe, D., Kotelovica, S., Akopjana, I., Knott, B., Wegner, S., Engelke, F., Lesage, A., Emsley, L., Tars, K., Herrmann, T., and Pintacuda, G.: Structure of fully protonated proteins by proton-detected magic-angle spinning NMR, P. Natl. Acad. Sci. USA, 113, 9187–9192, 2016. a
Barbet-Massin, E., Pell, A. J., Jaudzems, K., Franks, W. T., Retel, J. S., Kotelovica, S., Akopjana, I., Tars, K., Emsley, L., Oschkinat, H., Lesage, A., and Pintacuda, G.: Out-and-back 13C-13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS, J. Biomol. NMR, 56, 379–386, 2013. a, b
Chevelkov, V., Giller, K., Becker, S., and Lange, A.: Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization, J. Magn. Reson., 230, 205–11, 2013. a
Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J., and Bax, A.: NMRPIPE – a multidimensional spectral processing system based on Unix pipes, J. Biomol. NMR, 6, 277–293, 1995. a
Fraga, H., Arnaud, C.-A., Gauto, D. F., Audin, M., Kurauskas, V., Macek, P.,
Krichel, C., Guan, J.-Y., Boisbouvier, J., Sprangers, R., Breyton, C., and
Schanda, P.: Solid-State NMR H-N-(C)-H and H-N-C-C 3D/4D Correlation
Experiments for Resonance Assignment of Large Proteins, Chem. Phys. Chem., 18,
2697–2703, 2017. a, b, c, d, e
Fricke, P., Chevelkov, V., Zinke, M., Giller, K., Becker, S., and Lange, A.:
Backbone assignment of perdeuterated proteins by solid-state NMR using
proton detection and ultrafast magic-Angle spinning, Nat. Protoc., 12,
764–782, 2017. a
Frye, J. S. and Maciel, G. E.: Setting the magic angle using a quadrupolar
nuclide, J. Magn. Reson., 48, 125–131, 1982. a
Gao, M., Nadaud, P. S., Bernier, M. W., North, J. A., Hammel, P. C., Poirier,
M. G., and Jaroniec, C. P.: Histone H3 and H4 N-terminal tails in nucleosome
arrays at cellular concentrations probed by magic angle spinning NMR
spectroscopy, J. Am. Chem. Soc., 135, 15278–15281, 2013. a
Gauto, D. F., Estrozi, L. F., Schwieters, C. D., Effantin, G., Macek, P., Sounier, R., Sivertsen, A. C., Schmidt, E., Kerfah, R., Mas, G., Colletier, J.-P., Güntert, P., Favier, A., Schoehn, G., Schanda, P., and Boisbouvier, J.: Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex, Nat. Commun., 10, 2697, https://doi.org/10.1038/s41467-019-10490-9, 2019. a, b, c
Geen, H. and Freeman, R.: Band-selective radiofrequency pulses, J. Magn. Reson., 93, 93–141, 1990. a
Gullion, T. and Schaefer, J.: Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance nuclear-magnetic-resonance, Adv. Magn. Reson., 13, 57–83, 1988. a
Hartmann, S. R. and Hahn, E. L.: Nuclear Double Resonance in the Rotating Frame, Phys. Rev., 128, 2042–2053, 1962. a
Helmus, J. J. and Jaroniec, C. P.: Nmrglue: An open source Python package for the analysis of multidimensional NMR data, J. Biomol. NMR, 55, 355–367, 2013. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, 2007. a
Jain, M. G., Lalli, D., Stanek, J., Gowda, C., Prakash, S., Schwarzer, T. S., Schubeis, T., Castiglione, K., Andreas, L. B., Madhu, P. K., Pintacuda, G., and Agarwal, V.: Selective 1H-1H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR, J. Phys. Chem. Lett., 8, 2399–2405, 2017. a, b
Kern, T., Hediger, S., and Müller, P.: Toward the Characterization of Peptidoglycan Structure and Protein− Peptidoglycan Interactions by Solid-State NMR Spectroscopy, J. Am. Chem. Soc., 130, 5618–5619, 2008. a
Krushelnitsky, A. and Reichert, D.: Solid-state NMR and protein dynamics,
Prog. Nucl. Magn. Reson. Spectr., 47, 1–25, 2005. a
Lamley, J. M. and Lewandowski, J. R.: Relaxation-Based Magic-Angle Spinning
NMR Approaches for Studying Protein Dynamics, eMagRes, 5,
1423–1434, 2016. a
Lange, A., Seidel, K., Verdier, L., Luca, S., and Baldus, M.: Analysis of
Proton−Proton Transfer Dynamics in Rotating Solids and Their Use for 3D
Structure Determination, J. Am. Chem. Soc., 125, 12640–12648, 2003. a
Levitt, M.: Symmetry-based pulse sequences in magic-angle spinning solid-state
NMR, Encycl. Nucl. Magn. Reson., 9, 165–196, 2002. a
Lewandowski, J. R., De Paëpe, G., and Griffin, R. G.: Proton Assisted
Insensitive Nuclei Cross Polarization, J. Am. Chem. Soc., 129, 728–729,
2007. a
Linser, R., Fink, U., and Reif, B.: Narrow carbonyl resonances in
proton-diluted proteins facilitate NMR assignments in the solid-state, J.
Biomol. NMR, 47, 1–6, 2010. a
Meier, B. H. and Ernst, R. R.: Elucidation of chemical exchange networks by
two-dimensional NMR spectroscopy: the heptamethylbenzenonium ion, J. Am.
Chem. Soc., 101, 6441–6442, 1979. a
Nielsen, N., Bildsoe, H., Jakobsen, H., and Levitt, M.: Double-quantum
homonuclear rotary resonance: Efficient dipolar recovery in magic-angle
spinning nuclear magnetic resonance, J. Chem. Phys., 101, 1805–1812, 1994. a
Rovó, P.: Recent advances in solid-state relaxation dispersion techniques, Solid State Nucl. Magn. Reson., 108, 101665, https://doi.org/10.1016/j.ssnmr.2020.101665, 2020. a
Rovó, P. and Linser, R.: Microsecond Timescale Protein Dynamics: a
Combined Solid-State NMR Approach, Chem. Phys. Chem., 19, 34–39, 2018. a
Scholz, I., Huber, M., Manolikas, T., Meier, B. H., and Ernst, M.: MIRROR
recoupling and its application to spin diffusion under fast magic-angle
spinning, Chem. Phys. Lett., 460, 278–283, 2008. a
Stanek, J., Andreas, L. B., Jaudzems, K., Cala, D., Lalli, D., Bertarello, A.,
Schubeis, T., Akopjana, I., Kotelovica, S., Tars, K., Pica, A., Leone, S.,
Picone, D., Xu, Z.-Q., Dixon, N. E., Martinez, D., Berbon, M., El Mammeri,
N., Noubhani, A., Saupe, S., Habenstein, B., Loquet, A., and Pintacuda, G.:
NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully
Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid
Fibrils, Angew. Chemie Int. Ed., 55, 15504–15509, 2016. a
Thakur, R. S., Kurur, N. D., and Madhu, P. K.: Swept-frequency two-pulse phase
modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem.
Phys. Lett., 426, 459–463, 2006. a
Vallet, A., Favier, A., Brutscher, B., and Schanda, P.: NMRlib 2.0: IBS pulse sequence tools for Bruker spectrometers, IBS (Institut de Biologie Structurale), available at: http://www.ibs.fr/nmrlib, last access: 15 November 2020. a
Vallurupalli, P., Bouvignies, G., and Kay, L. E.: Studying “invisible” excited
protein states in slow exchange with a major state conformation, J. Am.
Chem. Soc., 134, 8148–8161, 2012. a
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: a
structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30,
2011. a
Verel, R., Ernst, M., and Meier, B. H.: Adiabatic dipolar recoupling in
solid-state NMR: the DREAM scheme, J. Magn. Reson., 150, 81–99, 2001. a
Wi, S. and Frydman, L.: An Efficient, Robust New Scheme for Establishing
Broadband Homonuclear Correlations in Biomolecular Solid State NMR,
Chem. Phys. Chem., 21, 284–294, 2020. a
Wittmann, J. J., Agarwal, V., Hellwagner, J., Lends, A., Cadalbert, R., Meier,
B. H., and Ernst, M.: Accelerating proton spin diffusion in perdeuterated
proteins at 100 kHz MAS, J. Biomol. NMR, 66, 233–242, 2016. a
Xiang, S., Grohe, K., Rovó, P., Vasa, S. K., Giller, K., Becker, S., and Linser, R.: Sequential backbone assignment based on dipolar amide-to-amide correlation experiments, J. Biomol. NMR, 62, 303–311, https://doi.org/10.1007/s10858-015-9945-4, 2015. a
Zhou, D. H. and Rienstra, C. M.: High-performance solvent suppression for
proton detected solid-state NMR, J. Magn. Reson., 192, 167–172, 2008. a
Short summary
We introduce ssNMRlib, a library of pulse sequences and jython scripts for user-friendly setup and acquisition of solids-state NMR experiments. ssNMRlib facilitates all steps of data acquisition, including calibration of various pulse-sequence parameters and semi-automatic setup of even complex high-dimensional experiments, using an intuitive graphical user interface, launched directly within Bruker's Topspin acquisition program.
We introduce ssNMRlib, a library of pulse sequences and jython scripts for user-friendly setup...