Articles | Volume 1, issue 1
https://doi.org/10.5194/mr-1-97-2020
https://doi.org/10.5194/mr-1-97-2020
Research article
 | 
18 Jun 2020
Research article |  | 18 Jun 2020

Highly stable magic angle spinning spherical rotors

Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes

Related authors

Design and performance of an oversized-sample 35 GHz EPR resonator with an elevated Q value
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024,https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
Cryogenic-compatible spherical rotors and stators for magic angle spinning dynamic nuclear polarization
Lauren E. Price, Nicholas Alaniva, Marthe Millen, Till Epprecht, Michael Urban, Alexander Däpp, and Alexander B. Barnes
Magn. Reson., 4, 231–241, https://doi.org/10.5194/mr-4-231-2023,https://doi.org/10.5194/mr-4-231-2023, 2023
Short summary

Related subject area

Field: Solid-state NMR | Topic: Instrumentation
Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference
Václav Římal, Morgane Callon, Alexander A. Malär, Riccardo Cadalbert, Anahit Torosyan, Thomas Wiegand, Matthias Ernst, Anja Böckmann, and Beat H. Meier
Magn. Reson., 3, 15–26, https://doi.org/10.5194/mr-3-15-2022,https://doi.org/10.5194/mr-3-15-2022, 2022
Short summary
When the MOUSE leaves the house
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021,https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary

Cited articles

Andrew, E. R.: Magic angle spinning, Int. Rev. Phys. Chem., 1, 195–224, https://doi.org/10.1080/01442358109353320, 1981. a, b
Andrew, E. R., Bradbury, A., and Eades, R. G.: Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation, Nature, 183, 1802–1803, https://doi.org/10.1038/1831802a0, 1959. a
Bougault, C., Ayala, I., Vollmer, W., Simorre, J. P., and Schanda, P.: Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency, J. Struct. Biol., 206, 66–72, https://doi.org/10.1016/j.jsb.2018.07.009, 2019. a
Bracewell, R. N. and Garriott, O. K.: Rotation of artificial Earth satellites, Nature, 182, 760–762, https://doi.org/10.1038/182760a0, 1958. a
Cegelski, L., Kim, S. J., Hing, A. W., Studelska, D. R., O'Connor, R. D., Mehta, A. K., and Schaefer, J.: Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in Staphylococcus aureus, Biochemistry, 41, 13053–13058, https://doi.org/10.1021/bi0202326, 2002. a
Download
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.