Articles | Volume 1, issue 1
https://doi.org/10.5194/mr-1-97-2020
https://doi.org/10.5194/mr-1-97-2020
Research article
 | 
18 Jun 2020
Research article |  | 18 Jun 2020

Highly stable magic angle spinning spherical rotors

Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Alexander Barnes on behalf of the Authors (07 May 2020)  Author's response   Manuscript 
ED: Publish as is (11 May 2020) by Robert Tycko
AR by Alexander Barnes on behalf of the Authors (12 May 2020)
Download
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.