Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-139-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-139-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exchange interaction in short-lived flavine adenine dinucleotide biradical in aqueous solution revisited by CIDNP (chemically induced dynamic nuclear polarization) and nuclear magnetic relaxation dispersion
Ivan V. Zhukov
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Alexey S. Kiryutin
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Mikhail S. Panov
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Natalya N. Fishman
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Olga B. Morozova
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Nikita N. Lukzen
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Konstantin L. Ivanov
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
deceased, 5 March 2021
Hans-Martin Vieth
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
Renad Z. Sagdeev
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Alexandra V. Yurkovskaya
CORRESPONDING AUTHOR
International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, 630090, Russia
Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
Related authors
Ivan V. Zhukov, Alexey S. Kiryutin, Ziqing Wang, Milan Zachrdla, Alexandra V. Yurkovskaya, Konstantin L. Ivanov, and Fabien Ferrage
Magn. Reson., 1, 237–246, https://doi.org/10.5194/mr-1-237-2020, https://doi.org/10.5194/mr-1-237-2020, 2020
Short summary
Short summary
We studied spin dynamics in nuclear spin systems at low magnetic fields, where strong coupling among nuclear spins of the same kind, here 13C, is expected. Such conditions are known to be favorable for coherent polarization transfer. However, to our surprise, interactions with other nuclei, i.e., protons, lead to a breakdown of the strong coupling conditions. By using a two-field nuclear magnetic resonance approach, we can manipulate low field-spin dynamics and reintroduce strong coupling.
Alexandra Yurkovskaya and Geoffrey Bodenhausen
Magn. Reson., 2, 341–342, https://doi.org/10.5194/mr-2-341-2021, https://doi.org/10.5194/mr-2-341-2021, 2021
Short summary
Bogdan A. Rodin and Konstantin L. Ivanov
Magn. Reson., 1, 347–365, https://doi.org/10.5194/mr-1-347-2020, https://doi.org/10.5194/mr-1-347-2020, 2020
Short summary
Short summary
This work discusses nuclear magnetic resonance (NMR) experiments, which make use of coherent spin evolution at level anti-crossings. In this work, we provide a common description of such phenomena (hopefully, a reasonably simple one), which is illustrated by a number of examples from various subfields of NMR.
Ivan V. Zhukov, Alexey S. Kiryutin, Ziqing Wang, Milan Zachrdla, Alexandra V. Yurkovskaya, Konstantin L. Ivanov, and Fabien Ferrage
Magn. Reson., 1, 237–246, https://doi.org/10.5194/mr-1-237-2020, https://doi.org/10.5194/mr-1-237-2020, 2020
Short summary
Short summary
We studied spin dynamics in nuclear spin systems at low magnetic fields, where strong coupling among nuclear spins of the same kind, here 13C, is expected. Such conditions are known to be favorable for coherent polarization transfer. However, to our surprise, interactions with other nuclei, i.e., protons, lead to a breakdown of the strong coupling conditions. By using a two-field nuclear magnetic resonance approach, we can manipulate low field-spin dynamics and reintroduce strong coupling.
Cited articles
Adhikary, A., Kumar, A., Khanduri, D., and Sevilla, M. D.: Effect of Base
Stacking on the Acid-Base Properties of the Adenine Cation Radical
[A⚫+] in Solution: ESR and DFT Studies, J. Am. Chem. Soc.,
130, 10282–10292, https://doi.org/10.1021/ja802122s, 2008.
Ahmad, M.: Photocycle and Signaling Mechanisms of Plant Cryptochromes,
Curr. Opin. Plant Biol., 33, 108–115,
https://doi.org/10.1016/j.pbi.2016.06.013, 2016.
Antill, L. M. and Woodward, J. R.: Flavin adenine dinucleotide
photochemistry is magnetic field sensitive at physiological pH, J. Phys.
Chem. Lett., 9, 26910–2696,
https://doi.org/10.1021/acs.jpclett.8b01088, 2018.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig,
H., Shindyalov, I. N., and Bourne, P. E.: The Protein Data Bank, Nucleic
Acids Res., 28, 235–242, https://doi.org/10.1093/nar/28.1.235, 2000.
Bruns, C. M. K. and Andrew, P.: Refined Crystal Structure of Spinach Ferredoxin
Reductase at 1.7 Å Resolution: Oxidized, Reduced and 2′-Phospho-5′-AMP Bound States, J. Mol. Biol., 247, 125–145,
https://doi.org/10.1006/jmbi.1994.0127, 1995.
De Kanter, F. J. J. and Kaptein, R.: CIDNP Transfer Via Nuclear Dipolar
Relaxation and Spin-Spin Coupling, Chem. Phys. Lett., 62, 421–426,
https://doi.org/10.1016/0009-2614(79)80733-2, 1979.
de Kanter, F. J. J., den Hollander, J. A., Huizer, A. H., and Kaptein, R.:
Biradical CIDNP and the Dynamics of Polymethylene Chains, Mol. Phys., 34,
857–874, https://doi.org/10.1080/00268977700102161, 1977.
Dodson, C. A., Wedge, C. J., Murakami, M., Maeda, K., Wallace, M. I., and
Hore, P. J.: Fluorescence-detected magnetic field effects on radical pair
reactions from femtolitre volumes, Chem. Commun., 51, 8023–8026,
https://doi.org/10.1039/C5CC01099C, 2015.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E.,
and Hutchison, G. R.: Avogadro: An Advanced Semantic Chemical Editor,
Visualization, and Analysis Platform, J. Cheminformatics, 4, 17,
https://doi.org/10.1186/1758-2946-4-17, 2012.
Hore, P. J. and Kaptein, R.: Photochemically Induced Dynamic
Nuclear-Polarization (Photo-CIDNP) of Biological Molecules Using Continuous
Wave and Time-Resolved Methods, ACS Symp. Ser., 191, 285–318, 1982.
Hore, P. J. and Mouritsen, H.: The Radical-Pair Mechanism of
Magnetoreception, Ann. Rev. Biophys., 45, 299–344,
https://doi.org/10.1146/annurev-biophys-032116-094545, 2016.
Ivanov, K. L., Yurkovskaya, A. V., and Vieth, H.-M.: Coherent Transfer of
Hyperpolarization in Coupled Spin Systems at Variable Magnetic Field, J.
Chem. Phys., 128, 154701, https://doi.org/10.1063/1.2901019, 2008.
Kieninger, M., Ventura, O. N., and Kottke, T.: Calculation of the Geometries
and Infrared Spectra of the Stacked Cofactor Flavin Adenine Dinucleotide
(FAD) as the Prerequisite for Studies of Light-Triggered Proton and Electron
Transfer, Biomolecules, 10, 573, https://doi.org/10.3390/biom10040573, 2020.
Kiryutin, A. S., Pravdivtsev, A. N., Ivanov, K. L., Grishin, Y. A., Vieth,
H.-M., and Yurkovskaya, A. V.: A Fast Field-Cycling Device for
High-Resolution NMR: Design and Application to Spin Relaxation and
Hyperpolarization Experiments, J. Magn. Reson., 263, 79–91,
https://doi.org/10.1016/j.jmr.2015.11.017, 2016.
Lukzen, N. and Ivanov, K.: CIDNP field dependence simulation program for flexible biradicals. Magnetic Resonance, Zenodo, https://doi.org/10.5281/zenodo.4680150, 2021.
Morozova, O. B., Yurkovskaya, A. V., Tsentalovich, Y. P., Sagdeev, R. Z.,
Wu, T., and Forbes, M. D. E.: Study of Consecutive Biradicals from
2-Hydroxy-2,12-Dimethylcyclododecanone by TR-CIDNP, TREPR, and Laser Flash
Photolysis, J. Phys. Chem. A, 101, 8803–8808,
https://doi.org/10.1021/jp9711196, 1997a.
Morozova, O. B., Yurkovskaya, A. V., Tsentalovich, Y. P., and Vieth, H.-M.:
1H and 13C Nuclear Polarization in Consecutive Biradicals During
the Photolysis of 2,2,12,12-Tetramethylcyclododecanone, J. Phys. Chem. A,
101, 399–406, https://doi.org/10.1021/jp961456z, 1997b.
Morozova, O. B., Kiryutin, A. S., Sagdeev, R. Z., and Yurkovskaya, A. V.:
Electron Transfer between Guanosine Radical and Amino Acids in Aqueous
Solution. 1. Reduction of Guanosine Radical by Tyrosine, J. Phys.
Chem. B, 111, 7439–7448, 2007.
Morozova, O. B., Ivanov, K. L., Kiryutin, A. S., Sagdeev, R. Z.,
Köchling, T., Vieth, H.-M., and Yurkovskaya, A. V.: Time-Resolved CIDNP:
An NMR Way to Determine the EPR Parameters of Elusive Radicals, Phys. Chem.
Chem. Phys., 13, 6619–6627, https://doi.org/10.1007/BF03166215, 2011.
Murakami, M., Maeda, K., and T. Arai.: Dynamics of intramolecular electron
transfer reaction of FAD studied by magnetic field effects on transient
absorption spectra, J. Phys. Chem. A., 109, 5793–5800,
https://doi.org/10.1021/jp0519722, 2005.
Paul, S., Kiryutin, A. S., Guo, J., Ivanov, K. L., Matysik, J., Yurkovskaya,
A. V., and Wang, X.: Magnetic Field Effect in Natural Cryptochrome Explored
with Model Compound, Sci. Rep., 7, 11892,
https://doi.org/10.1038/s41598-017-10356-4, 2017.
Stob, S., Kemmink, J., and Kaptein, R.: Intramolecular Electron Transfer in
Flavin Adenine Dinucleotide. Photochemically Induced Dynamic Nuclear
Polarization Study at High and Low Magnetic Fields, J. Am. Chem. Soc., 111,
7036–7042, 1989.
Tsentalovich, Y. P., Morozova, O. B., Avdievich, N. I., Ananchenko, G. S.,
Yurkovskaya, A. V., Ball, J. D., and Forbes, M. D. E.: Influence of
Molecular Structure on the Rate of Intersystem Crossing in Flexible
Biradicals, J. Phys. Chem. A, 101, 8809–8816,
https://doi.org/10.1021/jp972717n, 1997.
Tsentalovich, Y. P., Forbes, M. D. E., Morozova, O. B., Plotnikov, I. A.,
McCaffrey, V. P., and Yurkovskaya, A. V.: Spin and Molecular Dynamics in
Acyl-Containing Biradicals: Time-Resolved Electron Paramagnetic Resonance
and Laser Flash Photolysis Study, J. Phys. Chem. A, 106, 7121–7129,
https://doi.org/10.1021/jp020098z, 2002.
Wiltschko, R. and Wiltschko, W.: Magnetoreception in Birds, J. R. Soc.
Interface, 16, 20190295, https://doi.org/10.1098/rsif.2019.0295, 2019.
Yurkovskaya, A. V., Morozova, O. B., Sagdeev, R. Z., Dvinskih, S. V.,
Buntkowsky, G., and Vieth, H.-M.: The Influence of Scavenging on CIDNP Field
Dependences in Biradicals During the Photolysis of Large-Ring
Cycloalkanones, Chem. Phys., 197, 157–166,
https://doi.org/10.1016/0301-0104(95)00125-8, 1995.
Zhukov, I. V., Kiryutin, A. S., Yurkovskaya, A. V., Grishin, Y. A., Vieth,
H.-M., and Ivanov, K. L.: Field-Cycling NMR Experiments in Ultra-Wide
Magnetic Field Range: Relaxation and Coherent Polarization Transfer, Phys.
Chem. Chem. Phys., 20, 12396–12405, https://doi.org/10.1039/C7CP08529J,
2018.
Zhukov, I., Fishman, N., Kiryutin, A., Lukzen, N., Panov, M., Steiner, U.,
Vieth, H.-M., Schäfer, J., Lambert, C., and Yurkovskaya, A.: Positive
Electronic Exchange Interaction and Predominance of Minor Triplet Channel in
CIDNP Formation in Short Lived Charge Separated States of D-X-A Dyads, J.
Chem. Phys, 152, 014203, https://doi.org/10.1063/1.5131817, 2020a.
Zhukov, I. V., Kiryutin, A. S., Ferrage, F., Buntkowsky, G., Yurkovskaya, A.
V., and Ivanov, K. L.: Total Correlation Spectroscopy across All NMR-Active
Nuclei by Mixing at Zero Field, J. Phys. Chem. Lett., 11, 7291–7296,
https://doi.org/10.1021/acs.jpclett.0c02032, 2020b.
Zhukov, I. V., Kiryutin, A. S., Panov, M. S., Fishman, N. N., Morozova, O. B., Lukzen, N. N., Ivanov, K. L., Vieth, H.-M., Sagdeev, R. Z., and Yurkovskaya, A. V.: Data for “Exchange interaction in FAD biradical”, Magnetic Resonance, 2, 2021 [Data set]. Magnetic Resonance, Zenodo, https://doi.org/10.5281/zenodo.4680209, 2021.
Short summary
We report data on nuclear polarization formed in photoreaction of intramolecular electron transfer from adenine to flavin that was revealed several years ago by R. Kaptein by CIDNP. The question of whether one or two types of biradicals are formed stays unresolved. This work clarified the problem and confirmed that single common emissive maximum in magnetic field dependence of CIDNP may originate from single level crossing of short-lived biradical and that the FAD molecule has a compact shape.
We report data on nuclear polarization formed in photoreaction of intramolecular electron...
Special issue