Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
When the MOUSE leaves the house
Institut für Technische und Makromolekulare Chemie, RWTH Aachen
University, 52159 Roetgen, Germany
Jens Anders
Institute of Smart Sensors, University of Stuttgart, 70569 Stuttgart, Germany
Related authors
Bernhard Blümich, Matthew Parziale, and Matthew Augustine
Magn. Reson., 4, 217–229, https://doi.org/10.5194/mr-4-217-2023, https://doi.org/10.5194/mr-4-217-2023, 2023
Short summary
Short summary
Diffusive motion in confined three-site relaxation exchange was studied in Monte Carlo simulations. In thermodynamic equilibrium, the cross-peaks in NMR relaxation exchange maps are symmetric. Asymmetry is observed in mass-balanced driven equilibrium corresponding to circular flow. If this motion can be stimulated by external forces, it can be beneficial to heterogeneous catalysis.
Jan Lettens, Marina Avramenko, Ilias Vandevenne, Anh Chu, Philipp Hengel, Michal Kern, Jens Anders, Peter Moens, Etienne Goovaerts, and Sofie Cambré
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-11, https://doi.org/10.5194/mr-2024-11, 2024
Revised manuscript not accepted
Short summary
Short summary
Demonstration of an ultra-compact spectrometer for electrically-detected magnetic resonance on a chip (EDMRoC) of silicon carbide MOSFETs with comparable signal-to-noise ratio as state-of-the-art conventional resonator-based EDMR. The relatively low cost, high sensitivity and limited space requirements of the EDMRoC configuration holds promise for application in basic and applied research as well as in industrial environments.
Bernhard Blümich, Matthew Parziale, and Matthew Augustine
Magn. Reson., 4, 217–229, https://doi.org/10.5194/mr-4-217-2023, https://doi.org/10.5194/mr-4-217-2023, 2023
Short summary
Short summary
Diffusive motion in confined three-site relaxation exchange was studied in Monte Carlo simulations. In thermodynamic equilibrium, the cross-peaks in NMR relaxation exchange maps are symmetric. Asymmetry is observed in mass-balanced driven equilibrium corresponding to circular flow. If this motion can be stimulated by external forces, it can be beneficial to heterogeneous catalysis.
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022, https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
Short summary
We have presented a CMOS-based NMR platform featuring arbitrary phase control and coherent detection in a non-zero intermediate frequency (IF) receiver architecture as well as active automatic temperature compensation. The proposed platform is centered around a custom-designed NMR-on-a-chip transceiver. The entire system achieves a phase stability well below 1° in consecutive pulse acquire experiments and keeps a normalized standard deviation in the measured T2 values of 0.45 % over 100 min.
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021, https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Short summary
Novel electron spin resonance (ESR) detectors based on voltage-controlled oscillators (VCOs) have been attracting attention, mainly due to the possibility of integrating the whole ESR spectrometer onto a single printed circuit board at relatively low cost while maintaining a performance comparable to commercial solutions. We present an experimental setup where the signal is detected as a change in VCO oscillation amplitude, along with in-depth theoretical analysis of the novel readout scheme.
Silvio Künstner, Anh Chu, Klaus-Peter Dinse, Alexander Schnegg, Joseph E. McPeak, Boris Naydenov, Jens Anders, and Klaus Lips
Magn. Reson., 2, 673–687, https://doi.org/10.5194/mr-2-673-2021, https://doi.org/10.5194/mr-2-673-2021, 2021
Short summary
Short summary
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species. We present the application of an unconventional EPR detection method, rapid-scan EPR, to enhance the sensitivity on an improved design of a miniaturized EPR spectrometer implemented on a silicon microchip. Due to its size, it may be integrated into complex and harsh sample environments, enabling in situ or operando EPR measurements that have previously been inaccessible.
Related subject area
Field: Solid-state NMR | Topic: Instrumentation
Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference
Highly stable magic angle spinning spherical rotors
Václav Římal, Morgane Callon, Alexander A. Malär, Riccardo Cadalbert, Anahit Torosyan, Thomas Wiegand, Matthias Ernst, Anja Böckmann, and Beat H. Meier
Magn. Reson., 3, 15–26, https://doi.org/10.5194/mr-3-15-2022, https://doi.org/10.5194/mr-3-15-2022, 2022
Short summary
Short summary
Through the advent of fast magic-angle spinning and high magnetic fields, the spectral resolution of solid-state NMR spectra has recently been greatly improved. To take full advantage of this gain, the magnetic field must be stable over the experiment time of hours or even days. We thus monitor the field by simultaneous acquisition of a frequency reference (SAFR) and use this information to correct multidimensional spectra improving resolution and availability of productive magnet time.
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.
Cited articles
Anders, J. and Lips, K.: Device and method for generating and detecting a transient magnetization of a sample, patent application WO2017088852, available at: https://patentscope.wipo.int, last access: 22 March 2021 (in German).
Anders, J., Handwerker, J., Ortmanns, M., and Boero, G.: A low-power
high-sensitivity single-chip receiver for NMR microscopy, J. Magn. Reson.,
266, 41–50, 2017.
Anferova, S., Anferov, V., Adams, M., Blümler, P., Routley, N. , Hailu, K., Kupferschläger, K., Mallett, M. J. D., Schroeder, G., Sharma, S., and Blümich, B.: Construction of a NMR-MOUSE with Short Dead Time, Concepts Magn. Reson. B, 15, 15–25, 2002.
Angelova, L. V., Ormsby, B., and Richardson, E.: Diffusion of water from a range of conservation treatment gels into paint films studied by unilateral NMR: Part I: Acrylic emulsion paint, Microchem. J., 124, 311–320, 2016.
Armstrong-Smith, I.: A Briefcase Full of NMR, Anal. Sci., 26, 24–31, 2015.
Baias, M. and Blümich, B.: Nondestructive testing of objects from cultural heritage with NMR, in: Modern Magnetic Resonance, edited by: Webb, G. A., Springer, Berlin, https://doi.org/10.1007/978-3-319-28275-6_29-1, 2017.
Balibanu, F., Hailu, K., Eymael, R., Demco, D. E., and Blümich, B.: Nuclear Magnetic Resonance in inhomogeneous fields, J. Magn. Reson., 145, 248–258, 2000.
Blümich, B.: NMR Imaging of Materials, Clarendon Press, Oxford, 2000.
Blümich, B.: The Incredible Shrinking Scanner, Sci. Am., 299, 92–98, 2008.
Blümich, B.: Miniature and Tabletop Nuclear Magnetic Resonance
Spectrometers, Enc. Anal. Chem., a9458, 1–31, 2016.
Blümich, B.: Low-field and benchtop NMR, J. Magn. Reson., 306, 27–35,
2019a.
Blümich, B.: Essential NMR for Scientists and Engineers, 2nd edn.,
Springer, Cham, 2019b.
Blümich, B.: Concepts and Applications of the NMR-MOUSE, in: Advanced Characterization Techniques, Diagnostic Tools and Evaluation Methods in Heritage Science, edited by: Bastidas, D. M. and Cano, E., Springer, Cham, 61–79, 2019c.
Blümich, B. and Singh, K.: Desktop NMR and its applications from materials science to organic chemistry, Angew. Chem. Int. Ed. Eng., 57, 6996–7010, 2018.
Blümich, B., Anferov, V., Anferova, Klein, M., Fechete, R., Adams, M., and Casanova, F.: Simple NMR-MOUSE with a Bar Magnet, Magn. Reson. Eng., 15, 155–261, 2002a.
Blümich, B., Bruder, M., Guerlin, T., and Prado, P.: Device for inspecting flat goods made of polymeric materials with embedded textile strength supports, United States Patent Application US 2002/0084783 A1, https://patents.google.com/ (last access: 19 March 2021), 4 July 2002b.
Blümich, B., Kölker, C., Casanova, F., Perlo, J., and Felder, J.: Ein
mobiler und offener Kernspintomograph: Kernspintomographie für Medizin
und Materialforschung, Physik in unserer Zeit, 36, 236–242, 2005 (in German).
Blümich, B., Perlo, J., and Casanova, F.: Mobile single-sided NMR, Prog.
Nucl. Magn. Res. Sp., 52, 197–269, 2008.
Blümich, B., Casanova, F., Perlo, J., Presciutti, F., Chiara, A., and Doherty, B.: Noninvasive testing of art and cultural heritage by mobile NMR, Acc. Chem. Res., 43, 761–770, 2010.
Blümich, B., Haber-Pohlmeier, S., and Zia, W.: Compact NMR, de Gruyter,
Berlin, 2014.
Blümich, B., Teymouri, Y., and Clark, R.: NMR on the Road: Non-destructive Characterization of the Crumb-Rubber Fraction in Asphalt, Appl. Magn. Reson., 50, 497–509, 2019.
Blümich, B., Baias, M., Rehorn, C., Gabrielli, V., Jaschtschuk, D., Harrison, C., Invernizzi, C., and Malagodi, M.: Comparison of historical violins by non-destructive MRI depth profiling, Microchem. J., 158, 105219, https://doi.org/10.1016/j.microc.2020.105219, 2020.
Bürkle, H., Schmid, K., Klotz, T., Krapf, R., and Anders, J.:
A high voltage CMOS transceiver for low-field NMR with a maximum output
current of 1.4 App, 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), Seville, Spain, 10–21 October 2020, IEEE, https://doi.org/10.1109/ISCAS45731.2020.9181025, 2020.
Busse, F., Rehorn, C., Küppers, M., Ruiz, N., Stege, H., and Blümich, B.: NMR relaxometry of oil paint binders, Magn. Reson. Chem., 58, 830–839, 2020.
Callaghan, P. T.: Translational Dynamics & Magnetic Resonance, Oxford
University Press, Oxford, 2011.
Callaghan, P. T., Eccles, C. D., Haskell, T. G., Langhorne, P. J., and Seymour, J. D.: Earth's Field NMR in Antarctica: A Pulsed Gradient Spin Echo NMR Study of Restricted Diffusion in Sea Ice, J. Magn. Reson., 133, 148–154,
1998.
Capitani, D., Di Tullio, V., and Proietti, N.: Nuclear magnetic resonance to
characterize and monitor cultural heritage, Prog. Nucl. Magn. Res.
Sp., 64, 29–69, 2012.
Capitani, D., Sobolev, A., Di Tullio, V. D., Mannina, L., and Proietti, N.:
Portable NMR in food analysis, Chem. Biol. Technol. Agric., 4, 1–14, 2017.
Casanova, F. and Blümich, B.: Two-dimensional imaging with a single-sided NMR probe, J. Magn. Reson., 163, 38–45, 2003.
Casanova, F., Perlo, J., and Blümich, B.: Single-Sided NMR, Springer,
Berlin, 2011.
Chu, A., Schlecker, B., Handwerker, J., Künstner, J., Ortmanns, M., Lips, K., and Anders, J.: VCO-based ESR-on-a-chip as a tool for low-cost, high-sensitivity food quality control, IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, 19–21 October 2017, 17681148, https://doi.org/10.1109/BIOCAS.2017.8325172, 2017.
Coates G. R., Xiao, L., and Prammer, L. G.: NMR Logging Principles and
Applications, Halliburton, Houston, 1999.
Dalitz, F., Cudaj, M., Maiwald, M., and Guthausen, G.: Process and reaction
monitoring by low-field NMR spectroscopy, Prog. Nucl. Magn. Res.
Sp., 60, 52–70, 2012.
Danieli, E., Perlo, J., Blümich, B., and Casanova, F.: Small magnets for
portable NMR spectrometers, Angew. Chem. Int. Ed., 49, 4133–4135, 2010.
Eidmann, G., Savelsberg R., Blümler, P., and Blümich, B.: The NMR MOUSE, a mobile universal surface explorer, J. Magn. Reson., A122, 104–109, 1996.
Fife, G. R., Stabik, B., Kelley, A. E., King, J. N., Blümich, B., Hoppenbrouwers, R., and Meldrum, T.: Characterization of aging and solvent treatments of painted surfaces using single-sided NMR, Magn. Reson. Chem., 53, 58–63, 2015.
Fukushima, E.: Introduction, in: Mobile NMR and MRI: Developments and Applications, edited by: Johns, M. L., Fridjohnsson, E. O., Vogt, J.
J., and Haber, A., Roy. Soc. Chem., Cambridge, 1–10, 2016.
Grisi, M., Gualco, G., and Boero, G.: A Broadband Single-chip Transceiver for
Multi-nuclear NMR Probes, Rev. Sci. Instrum., 86, 044703, https://doi.org/10.1063/1.4916206, 2015.
Gutowsky, H. S., Meyer, L. H., and McClure, R. E.: Apparatus of Nuclear magnetic Resonance, Rev. Sci. Instrum., 24, 644–652, 1953.
Ha, D., Paulsen, J., Sun, N., Song, Y.-Q., and Ham, D.: Scalable NMR
Spectroscopy with Semiconductor Chips, P. Nat. Acad. Sci. USA, 111,
11955–11960, 2014.
Ha, D., Sun, N., and Ham, D.: Next-Generation Multidimensional NMR Spectrometer Based on Semiconductor Technology, eMagRes, 4, 117–126, 2015.
Hailu, K., Fechete, R., Demco, D. E., and Blümich, B.: Segmental anisotropy in strained elastomers detected with a portable NMR scanner, Solid State Nucl. Mag., 22, 327–343, 2002.
Haken, R. and Blümich, B.: Anisotropy in Tendon Investigated in Vivo by a
Portable NMR Scanner, the NMR-MOUSE, J. Magn. Reson. 144, 195–199, 2000.
Hürlimann, M. D. and Griffin, D. D.: Spin Dynamics of
Car-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B0 and
B1 fields and applications to NMR well logging, J. Magn. Reson., 143,
120–135, 2000.
Hürlimann, M. D. and Heaton, N. J.: NMR Well Logging, in: Mobile NMR and MRI: Developments and Applications, edited by: Johns, M. L.,
Fridjohnsson, E. O., Vogt, J. J., and Haber, A., Roy. Soc. Chem., Cambridge, 1–10, 2016.
Jackson, J. A., Burnett, L. J., and Harmon, J. F.: Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of
homogeneous magnetic field, J. Magn. Reson., 41, 411–421, 1980.
Johns, M. L., Fridjohnsson, E. O., Vogt, J. J., and Haber, A.: Mobile NMR
and MRI: Developments and Applications, Roy. Soc. Chem., Cambridge, 2016.
Kern, S., Wander, L., Meyer, K., Guhl, S., Mukkula, A. R. G., Holtkamp, M., Salge, M., Fleischer, C., Weber, N., King, R., Engell, S., Paul, A., Remelhe, M. P., and Maiwald, M.: Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals, Anal. Bioanal. Chem., 411, 3037–3046, 2019.
Keschenau, P. R., Klingel, H., Reuter, S., Foldenauer, A. C., Vieß, J., Weidener, D., Andruszkow, J., Bluemich, B., Tolba, R., Jacobs, M. J., and Kalder, J.: Evaluation of the NMR-MOUSE as a new method for continuous functional monitoring of the small intestine during different perfusion states in a porcine model, PLoS One, 13, e0206697, https://doi.org/10.1371/journal.pone.0206697, 2018.
Kleinberg, R. L. and Jackson, J. A.: An Introduction to the History of NMR Well Logging, Concepts Magn. Reson., 13, 340–342, 2001.
Nordon, A., McGill, C. A., and Littlejohn, D.: Process NMR spectrometry, Analyst, 126, 260–272, 2001.
Oligschläger, D., Kupferschläger, K., Poschadel, T., Watzlaw, J., and
Blümich, B.: Miniature mobile NMR sensors for material testing and
moisture-monitoring, Diffusion Fundamentals, 22, 1–25, 2014.
Oligschläger D., Lehmkuhl, S., Watzlaw, J., Benders, S., de Boever, E., Rehorn, C., Vossel, M., Schnakenberg, U., and Blümich, B.: Miniaturized
multi-coil arrays for functional planar imaging with a single-sided NMR
sensor, J. Magn. Reson., 254, 10–18, 2015a.
Oligschläger, D., Glöggler, S., Watzlaw, J., Brendel, K., Jaschtschuk, D., Colell, J., Zia, W., Vossel, M., Schnakenberg, U., and Blümich, B.: A Miniaturized
NMR-MOUSE with a High Magnetic Field Gradient (Mini-MOUSE), Appl. Magn.
Reson., 46, 181–202, 2015b.
Olmi, R., Bini, M., Ignesti, A., Priori, S., Riminesi, C., and Felici, A.: Diagnostics and monitoring of frescoes using evanescent-field dielectrometry, Meas. Sci. Technol., 17, 2281–2288, 2006.
Perlo, J., Casanova, F., and Blümich, B.: Profiles with microscopic
resolution by single-sided NMR, J. Magn. Reson., 176, 64–70, 2005a.
Perlo, J., Demas, V., Casanova, F., Meriles, C. A., Reimer, J., Pines, A., and Blümich, B.: High-resolution NMR spectroscopy with a portable single-sided sensor, Science, 308, 1229, https://doi.org/10.1126/science.1108944, 2005b.
Perlo, J., Casanova, F., and Blümich, B.: Ex situ NMR in highly homogeneous fields: 1H spectroscopy, Science, 315, 1110–1112, 2006.
Prati, S., Sciutto, G., Volpi, F., Rehorn, C., Vurro, R., Blümich, B., Mazzocchetti, L., Giorgini, L., Samorì, C., Galletti, P., Tagliavini, E., and Mazzeo, R.: Cleaning oil paintings: NMR relaxometry and SPME to evaluate the effects of green solvents and innovative green gels, N. J. Chem., 43, 8229–8238, 2019.
Presciutti, F., Perlo, J., Casanova, F., Glöggler, S., Miliani, C., Blümich, B., Brunetti, B. G., and Sgamellotti A.: Noninvasive nuclear magnetic resonance profiling of painting layers, Appl. Phys. Lett., 93, 033505, https://doi.org/10.1063/1.2963026, 2008.
Proietti, N., Capitani, D., Rossi, E., Cozzolino, S., and Segre, A. L.:
Unilateral NMR study of a XVI century wall painted, J. Magn. Reson., 186,
311–318, 2007.
Rehorn, C. and Blümich, B.: Cultural Heritage Studies with Mobile NMR,
Angew. Chem. Int. Ed. Eng., 57, 7304–7312, 2018.
Rehorn, C., Kehlet, C., Del Federico, E., Zia, W., Meldrum, T., and Blümich, B.: Automatizing the comparison of NMR depth profiles, Strain, 54, e12254, https://doi.org/10.1111/str.12254, 2018.
Rühli, F., Böni, T., Perlo, J., Casanova, F., Baias, M., Egarter, E., and Blümich, B.: Non-invasive spatial tissue discrimination in ancient mummies and bones in situ by portable nuclear magnetic resonance, J. Cultural Heritage, 8, 257–263, 2007.
Saalwächter, K.: Microstructure and dynamics of elastomers as studied by
advanced low-resolution NMR methods, Rubber Chem. Tech., 85, 350–386, 2012.
Segre, A. L. and Blümich, B.: Progetto 'MOUSE': Risonanza magnetica per i
beni culturali, Ricerca & Futuro, 25, 34–36, 2002 (Italian).
Song, Y.-Q., Venkataramanan, L., Hürlimann, M. D., Flaum, M., Frulla, P., and Straley, C.:: T1-T2 Correlation Spectra obtained Using a Fast Two-Dimensional Laplace Inversion, J. Magn. Reson., 154, 261–268, 2002.
Van Landeghem, M., Danieli, E., Perlo, J., Blümich, B., and Casanova, F.:
Low-gradient single-sided NMR sensor for one-shot profiling of human skin,
J. Magn. Reson., 215, 74–84, 2012.
van Putte, K. and van den Enden, J.: Fully automated determination of solid fat content by pulsed NMR, J. Am. Oil Chem. Soc., 51, 316–320, 1974.
Varian, R. H.: Apparatus and Method for Identifying Substances, US patent
3395337, available at: https://www.freepatentsonline.com/ (last access: 19 March 2021), filed: 3 January 1952.
Watzlaw, J., Glöggler, S., Blümich, B., Mokwa, W., and Schnakenberg, U.: Stacked planar micro coils for single-sided NMR applications, J. Magn.
Reson., 230, 176–185, 2013.
Woessner, D. E.: The Early Days of NMR in the Southwest, Concepts Magn.
Reson., 13, 77–102, 2001.
Zalesskiy, S. S., Danieli, E., Blümich, B., and Ananikov, V. P.:
Miniaturization of NMR systems: desktop spectrometers, microcoil
spectroscopy, and “NMR on a chip” for chemistry, biochemistry, and industry,
Chem. Rev., 114, 5641–5694, 2014.
Short summary
The NMR-MOUSE is a magnetic resonance tool for non-destructive materials testing inside a laboratory. The history and use of this sensor are reviewed with attention to issues encountered when employed outside. Improvements are outlined to facilitate outdoor measurements.
The NMR-MOUSE is a magnetic resonance tool for non-destructive materials testing inside a...
Special issue