Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-203-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-203-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The long-standing relationship between paramagnetic NMR and iron–sulfur proteins: the mitoNEET example. An old method for new stories or the other way around?
Francesca Camponeschi
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
Angelo Gallo
Department of Pharmacy, University of Patras, Patras, 26504,
Greece
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
Lucia Banci
CORRESPONDING AUTHOR
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
Related subject area
Field: Liquid-state NMR | Topic: Applications – biological macromolecules
NMR side-chain assignments of the Crimean–Congo hemorrhagic fever virus glycoprotein n cytosolic domain
Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR
Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine
Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket
Localising nuclear spins by pseudocontact shifts from a single tagging site
Localising individual atoms of tryptophan side chains in the metallo-β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites
Fluorine NMR study of proline-rich sequences using fluoroprolines
Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation
Anomalous amide proton chemical shifts as signatures of hydrogen bonding to aromatic sidechains
Rapid assessment of Watson–Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST
High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin
Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone
Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling
Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method
Fragile protein folds: sequence and environmental factors affecting the equilibrium of two interconverting, stably folded protein conformations
Towards resolving the complex paramagnetic nuclear magnetic resonance (NMR) spectrum of small laccase: assignments of resonances to residue-specific nuclei
Phosphoserine for the generation of lanthanide-binding sites on proteins for paramagnetic nuclear magnetic resonance spectroscopy
Louis Brigandat, Maëlys Laux, Caroline Marteau, Laura Cole, Anja Böckmann, Lauriane Lecoq, Marie-Laure Fogeron, and Morgane Callon
Magn. Reson., 5, 95–101, https://doi.org/10.5194/mr-5-95-2024, https://doi.org/10.5194/mr-5-95-2024, 2024
Short summary
Short summary
We used NMR to sequentially assign the side-chain resonances of the cytosolic domain of glycoprotein n of the Crimean–Congo hemorrhagic fever virus. The combination of cell-free protein synthesis with high-field NMR and artificial intelligence approaches facilitated a time- and effort-efficient approach. Our results will be harnessed to study the membrane-bound form of the domain and its interactions with virulence factors, which will ultimately help to understand their role in disease.
Sarah Kuschert, Martin Stroet, Yanni Ka-Yan Chin, Anne Claire Conibear, Xinying Jia, Thomas Lee, Christian Reinhard Otto Bartling, Kristian Strømgaard, Peter Güntert, Karl Johan Rosengren, Alan Edward Mark, and Mehdi Mobli
Magn. Reson., 4, 57–72, https://doi.org/10.5194/mr-4-57-2023, https://doi.org/10.5194/mr-4-57-2023, 2023
Short summary
Short summary
The 20 genetically encoded amino acids provide the basis for most proteins and peptides that make up the machinery of life. This limited repertoire is vastly expanded by the introduction of non-canonical amino acids (ncAAs). Studying the structure of protein-containing ncAAs requires new computational representations that are compatible with existing modelling software. We have developed an online tool for this to aid future structural studies of this class of complex biopolymer.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Stephan Grzesiek, Johannes Paladini, Judith Habazettl, and Rajesh Sonti
Magn. Reson., 3, 91–99, https://doi.org/10.5194/mr-3-91-2022, https://doi.org/10.5194/mr-3-91-2022, 2022
Short summary
Short summary
We show here that binding of the anticancer drug imatinib to the ATP site of Abelson kinase and not binding to its allosteric site coincides with the opening of the kinase regulatory core at nanomolar concentrations. This has implications for the understanding of Abelson’s kinase regulation and activity during medication as well as for the design of new Abelson kinase inhibitors.
Henry W. Orton, Elwy H. Abdelkader, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 65–76, https://doi.org/10.5194/mr-3-65-2022, https://doi.org/10.5194/mr-3-65-2022, 2022
Short summary
Short summary
Installing a tag containing a paramagnetic metal ion on a protein can lead to large changes (pseudocontact shifts) in the resonances observed in NMR spectra. These are easily measured and contain valuable long-range structural information. The present work shows that a single tagging site furnished with different tags can be sufficient to localise atoms in proteins with high accuracy. In fact, this strategy works almost as well as the same number of tags distributed over multiple tagging sites.
Henry W. Orton, Iresha D. Herath, Ansis Maleckis, Shereen Jabar, Monika Szabo, Bim Graham, Colum Breen, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 1–13, https://doi.org/10.5194/mr-3-1-2022, https://doi.org/10.5194/mr-3-1-2022, 2022
Short summary
Short summary
This paper explores a method for determining the solution structure of a solvent-exposed polypeptide segment (the L3 loop), which is next to the active site of the penicillin-degrading enzyme IMP-1. Tagging three different sites on the protein with paramagnetic metal ions allowed positioning of the L3 loop with atomic resolution. It was found that the method was more robust when omitting data obtained with different metal ions if obtained with the same tag at the same tagging site.
Davy Sinnaeve, Abir Ben Bouzayene, Emile Ottoy, Gert-Jan Hofman, Eva Erdmann, Bruno Linclau, Ilya Kuprov, José C. Martins, Vladimir Torbeev, and Bruno Kieffer
Magn. Reson., 2, 795–813, https://doi.org/10.5194/mr-2-795-2021, https://doi.org/10.5194/mr-2-795-2021, 2021
Short summary
Short summary
Fluorine NMR was used to study the interaction between a proline-rich peptide and a SH3 domain using 4S- and 4R-fluorinated prolines whose potential as NMR probes has not been exploited yet. We present a comprehensive study addressing several aspects to be considered when using these residues as NMR probes, including relaxation and dynamics. We show that their conformational bias may be used to modulate the kinetics of protein binding to proline-rich motifs.
Christopher A. Waudby and John Christodoulou
Magn. Reson., 2, 777–793, https://doi.org/10.5194/mr-2-777-2021, https://doi.org/10.5194/mr-2-777-2021, 2021
Short summary
Short summary
We describe a suite of experiments that exploit field-dependent relaxation measurements of four-spin transitions in methyl groups to characterise chemical exchange processes and which can be used as an alternative or complement to CPMG relaxation dispersion measurements. We show that these four-spin transitions benefit from the methyl TROSY effect and so provide a unique combination of slow intrinsic relaxation and high sensitivity to chemical exchange.
Kumaran Baskaran, Colin W. Wilburn, Jonathan R. Wedell, Leonardus M. I. Koharudin, Eldon L. Ulrich, Adam D. Schuyler, Hamid R. Eghbalnia, Angela M. Gronenborn, and Jeffrey C. Hoch
Magn. Reson., 2, 765–775, https://doi.org/10.5194/mr-2-765-2021, https://doi.org/10.5194/mr-2-765-2021, 2021
Short summary
Short summary
The Biological Magnetic Resonance Data Bank (BMRB) has been used to identify overall trends, for example, the relationship between chemical shift and backbone conformation. The BMRB archive has grown so that statistical outliers are sufficiently numerous to afford insights into unusual or unique structural features in proteins. We analyze amide proton chemical shift outliers to gain insights into the occurrence of hydrogen bonds between an amide NH and the p-pi cloud of aromatic sidechains.
Bei Liu, Atul Rangadurai, Honglue Shi, and Hashim M. Al-Hashimi
Magn. Reson., 2, 715–731, https://doi.org/10.5194/mr-2-715-2021, https://doi.org/10.5194/mr-2-715-2021, 2021
Short summary
Short summary
There is growing interest in mapping exchange dynamics between Watson–Crick and Hoogsteen conformations across different DNA contexts. However, current methods are ill-suited for measurements at a large scale because they require isotopically enriched samples. We report that Hoogsteen dynamics can be measured on unlabeled samples using 1H CEST experiments, which have higher throughput and lower cost relative to conventional methods and also provide new insights into Hoogsteen dynamics.
Lilia Milanesi, Clare R. Trevitt, Brian Whitehead, Andrea M. Hounslow, Salvador Tomas, Laszlo L. P. Hosszu, Christopher A. Hunter, and Jonathan P. Waltho
Magn. Reson., 2, 629–642, https://doi.org/10.5194/mr-2-629-2021, https://doi.org/10.5194/mr-2-629-2021, 2021
Short summary
Short summary
The overall aim of the study is to provide a basis from which to improve the ability of tamoxifen family drugs to reduce the activity of a secondary target protein, calmodulin, during tumour development. The main conclusion is that the binding of a tamoxifen analogue is quite unlike that of other anti-calmodulin compounds in that two drug molecules bring the two domains of calmodulin into close proximity, but they are not fixed in orientation relative to the protein.
Chih-Ting Huang, Yei-Chen Lai, Szu-Yun Chen, Meng-Ru Ho, Yun-Wei Chiang, and Shang-Te Danny Hsu
Magn. Reson., 2, 375–386, https://doi.org/10.5194/mr-2-375-2021, https://doi.org/10.5194/mr-2-375-2021, 2021
Short summary
Short summary
Trigger factor (TF) is a conserved bacterial molecular chaperone that exists in a monomer–dimer equilibrium in solution. It binds to the ribosome as a monomer to facilitate folding of nascent polypeptide chains. We showed that dimeric TF exhibits distinct domain dynamics and conformational polymorphism and that TF contains multiple substrate binding sites that are only accessible in its monomeric form. The equilibrium of TF in different oligomeric states may serve as a regulatory mechanism.
Nestor Kamdem, Yvette Roske, Dmytro Kovalskyy, Maxim O. Platonov, Oleksii Balinskyi, Annika Kreuchwig, Jörn Saupe, Liang Fang, Anne Diehl, Peter Schmieder, Gerd Krause, Jörg Rademann, Udo Heinemann, Walter Birchmeier, and Hartmut Oschkinat
Magn. Reson., 2, 355–374, https://doi.org/10.5194/mr-2-355-2021, https://doi.org/10.5194/mr-2-355-2021, 2021
Short summary
Short summary
The Wnt signalling pathway plays a major role in prevention of cancer, whereby the protein Dishevelled connects from the transmembrane receptor Frizzled to downstream effectors via its PDZ domain. Here, cycles of chemical synthesis and structural biology are applied to develop PDZ ligands that block the Frizzled–Dishevelled interaction using NMR for screening, in ligand development, and for deriving structure–activity relationships. Cellular reporter assays demonstrate their efficacy.
György Pintér, Katharina F. Hohmann, J. Tassilo Grün, Julia Wirmer-Bartoschek, Clemens Glaubitz, Boris Fürtig, and Harald Schwalbe
Magn. Reson., 2, 291–320, https://doi.org/10.5194/mr-2-291-2021, https://doi.org/10.5194/mr-2-291-2021, 2021
Short summary
Short summary
The folding, refolding and misfolding of biomacromolecules including proteins, DNA and RNA is an important area of biophysical research to understand functional and disease states of a cell. NMR spectroscopy provides detailed insight, with both high time and atomic resolution. These experiments put stringent requirements on signal-to-noise for often irreversible folding reactions. The review describes methodological approaches and highlights key applications.
Mitsuhiro Takeda, Yohei Miyanoiri, Tsutomu Terauchi, and Masatsune Kainosho
Magn. Reson., 2, 223–237, https://doi.org/10.5194/mr-2-223-2021, https://doi.org/10.5194/mr-2-223-2021, 2021
Short summary
Short summary
Although both the hydrophobic aliphatic chain and hydrophilic ζ-amino group of the lysine side chain presumably contribute to the structures and functions of proteins, the dual nature of the lysine residue has not been fully understood yet, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain at the atomic scale. We describe herein a novel strategy to address the current situation using nuclear magnetic resonance spectroscopy.
Xingjian Xu, Igor Dikiy, Matthew R. Evans, Leandro P. Marcelino, and Kevin H. Gardner
Magn. Reson., 2, 63–76, https://doi.org/10.5194/mr-2-63-2021, https://doi.org/10.5194/mr-2-63-2021, 2021
Short summary
Short summary
While most proteins adopt one conformation, several interconvert between two or more very different structures. Knowing how sequence changes and small-molecule binding can control this behavior is essential for both understanding biology and inspiring new “molecular switches” which can control cellular pathways. This work contributes by examining these topics in the ARNT protein, showing that features of both the folded and unfolded states contribute to the interconversion process.
Rubin Dasgupta, Karthick B. S. S. Gupta, Huub J. M. de Groot, and Marcellus Ubbink
Magn. Reson., 2, 15–23, https://doi.org/10.5194/mr-2-15-2021, https://doi.org/10.5194/mr-2-15-2021, 2021
Short summary
Short summary
A method is demonstrated that can help in sequence-specific NMR signal assignment to nuclear spins near a strongly paramagnetic metal in an enzyme. A combination of paramagnetically tailored NMR experiments and second-shell mutagenesis was used to attribute previously observed chemical exchange processes in the active site of laccase to specific histidine ligands. The signals of nuclei close to the metal can be used as spies to unravel the role of motions in the catalytic process.
Sreelakshmi Mekkattu Tharayil, Mithun Chamikara Mahawaththa, Choy-Theng Loh, Ibidolapo Adekoya, and Gottfried Otting
Magn. Reson., 2, 1–13, https://doi.org/10.5194/mr-2-1-2021, https://doi.org/10.5194/mr-2-1-2021, 2021
Short summary
Short summary
A new way is presented for creating lanthanide binding sites on proteins using site-specifically introduced phosphoserine residues. The paramagnetic effects of lanthanides generate long-range effects, which contain structural information and are readily measured by NMR spectroscopy. Excellent correlations between experimentally observed and back-calculated pseudocontact shifts attest to very good immobilization of the lanthanide ions relative to the proteins.
Cited articles
Ab, E., Atkinson, A. R., Banci, L., Bertini, I., Ciofi-Baffoni, S., Brunner,
K., Diercks, T., Dötsch, V., Engelke, F., Folkers, G. E., Griesinger,
C., Gronwald, W., Günther, U., Habeck, M., de Jong, R. N., Kalbitzer, H.
R., Kieffer, B., Leeflang, B. R., Loss, S., Luchinat, C., Marquardsen, T.,
Moskau, D., Neidig, K. P., Nilges, M., Piccioli, M., Pierattelli, R.,
Rieping, W., Schippmann, T., Schwalbe, H., Travé, G., Trenner, J.,
Wöhnert, J., Zweckstetter, M., and Kaptein, R.: NMR in the SPINE
Structural Proteomics project, Acta Crystallogr. D, 62, 1150–1161, https://doi.org/10.1107/S0907444906032070, 2006.
Andersson, P., Weigelt, J., and Otting, G.: Spin-state selection filters for
the measurement of heteronuclear one-bond coupling constants, J. Biomol. NMR,
12, 435–441, https://doi.org/10.1023/a:1008239027287, 1998.
Arnesano, F., Banci, L., Bertini, I., Felli, I. C., Luchinat, C., and
Thompsett, A. R.: A Strategy for the NMR Characterization of Type II
Copper(II) Proteins: the Case of the Copper Trafficking Protein CopC from
Pseudomonas Syringae, J. Am. Chem. Soc., 125, 7200–7208,
https://doi.org/10.1021/ja034112c, 2003.
Arnesano, F., Banci, L., and Piccioli, M.: NMR structures of paramagnetic
metalloproteins, Q. Rev. Biophys., 38, 167–219,
https://doi.org/10.1017/S0033583506004161, 2005.
Bak, D. W., Zuris, J. A., Paddock, M. L., Jennings, P. A., and Elliott, S.
J.: Redox Characterization of the FeS Protein MitoNEET and Impact of
Thiazolidinedione Drug Binding, Biochemistry, 48, 10193–10195,
https://doi.org/10.1021/bi9016445, 2009.
Balayssac, S., Bertini, I., Luchinat, C., Parigi, G., and Piccioli, M.: 13C Direct Detected NMR Increases the Detectability of Residual Dipolar Couplings, J. Am. Chem. Soc., 128, 15042–15043,
https://doi.org/10.1021/ja0645436, 2006.
Banci, L., Bertini, I., Luchinat, C., Piccioli, M., Scozzafava, A., and
Turano, P.: Proton NOE studies on dicopper(II) dicobalt(II) superoxide
dismutase, Inorg. Chem., 28, 4650–4656, https://doi.org/10.1021/ic00325a023, 1989.
Banci, L., Bencini, A., Bertini, I., Luchinat, C., and Piccioli, M.:
Hydrogen-1 NOE and ligand field studies of copper-cobalt superoxide
dismutase with anions, Inorg. Chem., 29, 4867–4873,
https://doi.org/10.1021/ic00349a011, 1990a.
Banci, L., Bertini, I., and Luchinat, C.: The 1H NMR parameters of
magnetically coupled dimers – The Fe2S2 proteins as an example, in: Bioinorganic Chemistry, Springer, Berlin, Heidelberg, Germany, 113–136, https://doi.org/10.1007/BFb0058197, 1990b.
Banci, L., Bertini, I., Ciurli, S., Ferretti, S., Luchinat, C., and Piccioli,
M.: The electronic structure of [Fe4S4]3+ clusters in proteins – An investigation of the oxidized high-potential iron-sulfur protein II from Ectothiorhodospira vacuolata, Biochemistry, 32, 9387–9397,
https://doi.org/10.1021/bi00087a018, 1993.
Banci, L., Bertini, I., Eltis, L. D., Felli, I. C., Kastrau, D. H.,
Luchinat, C., Piccioli, M., Pierattelli, R., and Smith, M.: The
three-dimensional structure in solution of the paramagnetic high-potential
iron-sulfur protein I from Ectothiorhodospira halophila through nuclear
magnetic resonance, Eur. J. Biochem., 225, 715–725,
https://doi.org/10.1111/j.1432-1033.1994.00715.x, 1994.
Banci, L., Bertini, I., Calderone, V., Ciofi-Baffoni, S., Giachetti, A.,
Jaiswal, D., Mikolajczyk, M., Piccioli, M., and Winkelmann, J.: Molecular
view of an electron transfer process essential for iron-sulfur protein
biogenesis, P. Natl. Acad. Sci. USA, 110, 7136–7141,
https://doi.org/10.1073/pnas.1302378110, 2013.
Banci, L., Brancaccio, D., Ciofi-Baffoni, S., Del Conte, R., Gadepalli, R.,
Mikolajczyk, M., Neri, S., Piccioli, M., and Winkelmann, J.: [2Fe-2S] cluster
transfer in iron-sulfur protein biogenesis, P. Natl. Acad. Sci. USA,
111, 6203–6208, https://doi.org/10.1073/pnas.1400102111, 2014.
Banci, L., Camponeschi, F., Ciofi-Baffoni, S., and Piccioli, M.: The NMR
contribution to protein-protein networking in Fe-S protein maturation,
J. Biol. Inorg. Chem., 23, 665–685,
https://doi.org/10.1007/s00775-018-1552-x, 2018.
Battiste, J. L. and Wagner, G.: Utilization of site-directed spin labeling
and high-resolution heteronuclear nuclear magnetic resonance for global fold
determination of large proteins with limited nuclear overhauser effect data,
Biochemistry, 39, 5355–5365, https://doi.org/10.1021/bi000060h, 2000.
Baxter, E. L., Jennings, P. A., and Onuchic, J. N.: Interdomain communication
revealed in the diabetes drug target mitoNEET, P. Natl. Acad. Sci. USA, 108, 5266–5271, https://doi.org/10.1073/pnas.1017604108, 2011.
Beinert, H. and Albracht, S. P.: New insights, ideas and unanswered
questions concerning iron-sulfur clusters in mitochondria, Biochim. Biophys. Acta, 683, 245–277, https://doi.org/10.1016/0304-4173(82)90003-9, 1982.
Beinert, H., Holm, R. H., and Münck, E.: Iron-sulfur clusters: nature's
modular, multipurpose structures, Science, 277, 653–659, 1997.
Bermel, W., Bertini, I., Felli, I., Piccioli, M., and Pierattelli, R.:
13C-detected protonless NMR spectroscopy of proteins in solution, Prog. Nucl. Mag. Res. Sp., 48, 25–45, https://doi.org/10.1016/j.pnmrs.2005.09.002, 2006.
Bertini, I., Capozzi, F., Luchinat, C., Piccioli, M., and Oliver, M. V.: NMR
is a unique and necessary step in the investigation of iron sulfur proteins:
the HiPIP from R. gelatinosus as an example, Inorg. Chim. Acta,
198–200, 483–491, https://doi.org/10.1016/S0020-1693(00)92392-2, 1992a.
Bertini, I., Luchinat, C., Ming, L. J., Piccioli, M., Sola, M., and
Valentine, J. S.: Two-dimensional proton NMR studies of the paramagnetic
metalloenzyme copper-nickel superoxide dismutase, Inorg. Chem., 31,
4433–4435, https://doi.org/10.1021/ic00048a001, 1992b.
Bertini, I., Capozzi, F., Luchinat, C., Piccioli, M., and Vila, A. J.: The
Fe4S4 Centers in Ferredoxins Studied through Proton and Carbon Hyperfine Coupling, Sequence-Specific Assignments of Cysteines in Ferredoxins from Clostridium acidi urici and Clostridium pasteurianum, J. Am. Chem. Soc.,
116, 651–660, 1994.
Bertini, I., Ciurli, S., and Luchinat, C.: The electronic structure of FeS
centers in proteins and models a contribution to the understanding of their
electron transfer properties, in: Iron-Sulfur Proteins Perovskites, Springer, Berlin, Heidelberg, Germany, 1–53,
https://doi.org/10.1007/3-540-59105-2_1, 1995.
Bertini, I., Cowan, J. A., Luchinat, C., Natarajan, K., and Piccioli, M.:
Characterization of a Partially Unfolded High Potential Iron Protein,
Biochemistry, 36, 9332–9339, https://doi.org/10.1021/bi970810w, 1997.
Bertini, I., Jiménez, B., and Piccioli, M.: 13C direct detected
experiments: optimization for paramagnetic signals, J. Magn. Reson., 174,
125–132, https://doi.org/10.1016/j.jmr.2005.01.014, 2005.
Bertini, I., Luchinat, C., Parigi, G., and Ravera, E. (Eds.): The
hyperfine shift, in: NMR of Paramagnetic Molecules, 2nd edn., Elsevier,
Boston, USA, 25–60, https://doi.org/10.1016/B978-0-444-63436-8.00002-8, 2017a.
Bertini, I., Luchinat, C., Parigi, G., and Ravera, E. (Eds.): Relaxation, in: NMR of Paramagnetic Molecules, 2nd edn., Elsevier, Boston, USA, 77–126, https://doi.org/10.1016/B978-0-444-63436-8.00004-1, 2017b.
Brancaccio, D., Gallo, A., Mikolajczyk, M., Zovo, K., Palumaa, P.,
Novellino, E., Piccioli, M., Ciofi-Baffoni, S., and Banci, L.: Formation of
[4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly
machinery, J. Am. Chem. Soc., 136, 16240–16250, https://doi.org/10.1021/ja507822j, 2014.
Brutscher, B., Felli, I. C., Gil-Caballero, S., Hošek, T., Kümmerle,
R., Piai, A., Pierattelli, R., and Sólyom, Z.: NMR Methods for the Study
of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions:
General Overview and Practical Guidelines, Adv. Exp. Med. Biol., 870, 49–122, https://doi.org/10.1007/978-3-319-20164-1_3, 2015.
Cai, K., Tonelli, M., Frederick, R. O., and Markley, J. L.: Human
Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine
Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis,
Biochemistry, 56, 487–499, https://doi.org/10.1021/acs.biochem.6b00447, 2017.
Camponeschi, F., Ciofi-Baffoni, S., and Banci, L.: Anamorsin/Ndor1 Complex
Reduces [2Fe-2S]-MitoNEET via a Transient Protein-Protein Interaction, J.
Am. Chem. Soc., 139, 9479–9482, https://doi.org/10.1021/jacs.7b05003, 2017.
Camponeschi, F., Gallo, A., Piccioli, M., and Banci, L.: Paramagnetic tailored experiments for the NMR investigation of reduced and oxidized [2Fe-2S]-mitoNEET, Zenodo [Data set], https://doi.org/10.5281/zenodo.4442396, 2021.
Charlier, C., Cousin, S. F., and Ferrage, F.: Protein dynamics from nuclear
magnetic relaxation, Chem. Soc. Rev., 45, 2410–2422,
https://doi.org/10.1039/c5cs00832h, 2016.
Cheng, H. and Markley, J. L.: NMR Spectroscopic Studies of Paramagnetic
Proteins: Iron-Sulfur Proteins, Annu. Rev. Bioph. Biom., 24, 209–237,
https://doi.org/10.1146/annurev.bb.24.060195.001233, 1995.
Cheng, H., Xia, B., Reed, G. H., and Markley, J. L.: Optical, EPR, and 1H NMR
spectroscopy of serine-ligated [2Fe-2S] ferredoxins produced by
site-directed mutagenesis of cysteine residues in recombinant Anabaena 7120
vegetative ferredoxin, Biochemistry, 33, 3155–3164,
https://doi.org/10.1021/bi00177a003, 1994.
Ciofi-Baffoni, S., Gallo, A., Muzzioli, R., and Piccioli, M.: The
IR-15N-HSQC-AP experiment: a new tool for NMR spectroscopy of paramagnetic
molecules, J. Biomol. NMR, 58, 123–128, https://doi.org/10.1007/s10858-013-9810-2, 2014.
Ciofi-Baffoni, S., Nasta, V., and Banci, L.: Protein networks in the
maturation of human iron–sulfur proteins, Metallomics, 10, 49–72,
https://doi.org/10.1039/C7MT00269F, 2018.
Clore, G. M. and Iwahara, J.: Theory, practice, and applications of
paramagnetic relaxation enhancement for the characterization of transient
low-population states of biological macromolecules and their complexes,
Chem. Rev., 109, 4108–4139, https://doi.org/10.1021/cr900033p, 2009.
Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M.,
Bannow, C. A., Lund, E. T., and Mathews, W. R.: Identification of a novel
mitochondrial protein (“mitoNEET”) cross-linked specifically by a
thiazolidinedione photoprobe, Am. J. Physiol.-Endoc. M., 286,
252–260, https://doi.org/10.1152/ajpendo.00424.2003, 2004.
Contreras-Martos, S., Piai, A., Kosol, S., Varadi, M., Bekesi, A., Lebrun,
P., Volkov, A. N., Gevaert, K., Pierattelli, R., Felli, I. C., and Tompa, P.:
Linking functions: an additional role for an intrinsically disordered linker
domain in the transcriptional coactivator CBP, Sci. Rep.-UK, 7,
4676, https://doi.org/10.1038/s41598-017-04611-x, 2017.
Crack, J. C., Green, J., Thomson, A. J., and Le Brun, N. E.: Iron-sulfur
cluster sensor-regulators, Curr. Opin. Chem. Biol., 16, 35–44,
https://doi.org/10.1016/j.cbpa.2012.02.009, 2012.
Dicus, M. M., Conlan, A., Nechushtai, R., Jennings, P. A., Paddock, M. L.,
Britt, R. D., and Stoll, S.: Binding of Histidine in the
(Cys)3(His)1-Coordinated [2Fe-2S] Cluster of Human mitoNEET, J. Am. Chem.
Soc., 132, 2037–2049, https://doi.org/10.1021/ja909359g, 2010.
Donaldson, L. W., Skrynnikov, N. R., Choy, W. Y., Muhandiram, D. R., Sarkar,
B., Forman-Kay, J. D., and Kay, L. E.: Structural characterization of
proteins with an attached ATCUN motif by paramagnetic relaxation enhancement
NMR spectroscopy, J. Am. Chem. Soc., 123, 9843–9847, https://doi.org/10.1021/ja011241p, 2001.
Dugad, L. B., La Mar, G. N., Banci, L., and Bertini, I.: Identification of
localized redox states in plant-type two-iron ferredoxins using the nuclear
Overhauser effect, Biochemistry, 29, 2263–2271,
https://doi.org/10.1021/bi00461a009, 1990.
Dunham, W. R., Bearden, A. J., Salmeen, I. T., Palmer, G., Sands, R. H.,
Orme-Johnson, W. H., and Beinert, H.: The two-iron ferredoxins in spinach,
parsley, pig adrenal cortex, Azotobacter vinelandii, and Clostridium
pasteurianum: studies by magnetic field Mössbauer spectroscopy, Biochim. Biophys. Acta, 253, 134–152, https://doi.org/10.1016/0005-2728(71)90240-4, 1971.
Ferecatu, I., Gonçalves, S., Golinelli-Cohen, M.-P., Clémancey, M.,
Martelli, A., Riquier, S., Guittet, E., Latour, J.-M., Puccio, H., Drapier,
J.-C., Lescop, E., and Bouton, C.: The diabetes drug target MitoNEET governs
a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic
aconitase/iron regulatory protein 1, J. Biol. Chem., 289, 28070–28086,
https://doi.org/10.1074/jbc.M114.548438, 2014.
Gaillard, J., Moulis, J. M., and Meyer, J.: Hydrogen-1 nuclear magnetic
resonance of selenium-substituted clostridial ferredoxins, Inorg. Chem., 26, 320–324, https://doi.org/10.1021/ic00249a021, 2002.
Garcia-Serres, R., Clémancey, M., Latour, J.-M., and Blondin, G.:
Contribution of Mössbauer spectroscopy to the investigation of Fe/S
biogenesis, J. Biol. Inorg. Chem., 23, 635–644,
https://doi.org/10.1007/s00775-018-1534-z, 2018.
Geldenhuys, W. J., Benkovic, S. A., Lin, L., Yonutas, H. M., Crish, S. D.,
Sullivan, P. G., Darvesh, A. S., Brown, C. M., and Richardson, J. R.:
MitoNEET (CISD1) Knockout Mice Show Signs of Striatal Mitochondrial
Dysfunction and a Parkinson's Disease Phenotype, ACS Chem. Neurosci., 8,
2759–2765, https://doi.org/10.1021/acschemneuro.7b00287, 2017.
Golinelli-Cohen, M.-P., Lescop, E., Mons, C., Gonçalves, S.,
Clémancey, M., Santolini, J., Guittet, E., Blondin, G., Latour, J.-M.,
and Bouton, C.: Redox Control of the Human Iron-Sulfur Repair Protein
MitoNEET Activity via Its Iron-Sulfur Cluster, J. Biol. Chem., 291,
7583–7593, https://doi.org/10.1074/jbc.M115.711218, 2016.
Hagen, W. R.: EPR spectroscopy of complex biological iron-sulfur systems, J.
Biol. Inorg. Chem., 23, 623–634, https://doi.org/10.1007/s00775-018-1543-y, 2018.
Holm, R. H., Everett Jr., G. W., and Horrocks Jr., W. D.: Isotropic Nuclear
Magnetic Resonance Shifts in Tetrahedral Bispyridine and Bispicoline
Complexes of Nickel(II), J. Am. Chem. Soc., 88, 1071–1073,
https://doi.org/10.1021/ja00957a048, 1966.
Holz, R. C., Small, F. J., and Ensign, S. A.: Proton nuclear magnetic
resonance investigation of the [2Fe-2S](1-)-containing “Rieske-type”
protein from Xanthobacter strain Py2, Biochemistry, 36, 14690–14696,
https://doi.org/10.1021/bi971831t, 1997.
Hou, X., Liu, R., Ross, S., Smart, E. J., Zhu, H., and Gong, W.:
Crystallographic Studies of Human MitoNEET, J. Biol. Chem., 282,
33242–33246, https://doi.org/10.1074/jbc.C700172200, 2007.
Johnson, D. C., Dean, D. R., Smith, A. D., and Johnson, M. K.: Structure,
function, and formation of biological iron-sulfur clusters, Annu. Rev.
Biochem., 74, 247–281, https://doi.org/10.1146/annurev.biochem.74.082803.133518, 2005.
Kostic, M., Pochapsky, S. S., and Pochapsky, T. C.: Rapid Recycle 13C′, 15N and 13C, 13C′ Heteronuclear and Homonuclear Multiple Quantum Coherence Detection for Resonance Assignments in Paramagnetic Proteins: Example of Ni2+-Containing Acireductone Dioxygenase, J. Am. Chem. Soc., 124, 9054–9055, https://doi.org/10.1021/ja0268480, 2002.
Kowalsky, A.: Nuclear Magnetic Resonance Studies of Cytochrome c. Possible
Electron Delocalization∗, Biochemistry, 4, 2382–2388,
https://doi.org/10.1021/bi00887a018, 1965.
Kusminski, C. M., Holland, W. L., Sun, K., Park, J., Spurgin, S. B., Lin,
Y., Askew, G. R., Simcox, J. A., McClain, D. A., Li, C., and Scherer, P. E.:
MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a
crucial adaptive process that preserves insulin sensitivity in obesity,
Nature Medicine, 18, 1539–1549, https://doi.org/10.1038/nm.2899, 2012.
Kusminski, C. M., Park, J., and Scherer, P. E.: MitoNEET-mediated effects on
browning of white adipose tissue, Nat. Commun., 5, 3962, https://doi.org/10.1038/ncomms4962, 2014.
La Mar, G. N. and Sacconi, L.: Influence of halogen, substituent, and
solvent on spin delocalization in high-spin, five-coordinated
2,6-diacetylpyridinebis(N-alkylimine)nickel dihalides, J. Am. Chem. Soc.,
90, 7216–7223, https://doi.org/10.1021/ja01028a008, 1968.
Landry, A. P. and Ding, H.: Redox control of human mitochondrial outer
membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and
hydrogen peroxide, J. Biol. Chem., 289, 4307–4315,
https://doi.org/10.1074/jbc.M113.542050, 2014.
Landry, A. P., Cheng, Z., and Ding, H.: Reduction of mitochondrial protein
mitoNEET [2Fe-2S] clusters by human glutathione reductase, Free Radical Bio. Med., 81, 119–127, https://doi.org/10.1016/j.freeradbiomed.2015.01.017, 2015.
Landry, A. P., Wang, Y., Cheng, Z., Crochet, R. B., Lee, Y.-H., and Ding, H.:
Flavin nucleotides act as electron shuttles mediating reduction of the
[2Fe-2S] clusters in mitochondrial outer membrane protein mitoNEET, Free Radical Bio. Med., 102, 240–247, https://doi.org/10.1016/j.freeradbiomed.2016.12.001, 2017.
Lehmann, T., Luchinat, C., and Piccioli, M.: Redox-Related Chemical Shift
Perturbations on Backbone Nuclei of High-Potential Iron-Sulfur Proteins,
Inorg. Chem., 41, 1679–1683, https://doi.org/10.1021/ic010761i, 2002.
Lill, R.: Function and biogenesis of iron-sulphur proteins, Nature,
460, 831–838, https://doi.org/10.1038/nature08301, 2009.
Lin, J., Zhou, T., Ye, K., and Wang, J.: Crystal structure of human mitoNEET
reveals distinct groups of iron–sulfur proteins, P. Natl. Acad. Sci. USA, 104, 14640–14645, https://doi.org/10.1073/pnas.0702426104, 2007.
Lipper, C. H., Paddock, M. L., Onuchic, J. N., Mittler, R., Nechushtai, R.,
and Jennings, P. A.: Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters
to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster
Biogenesis, PLOS ONE, 10, e0139699, https://doi.org/10.1371/journal.pone.0139699, 2015.
Machonkin, T. E., Westler, W. M., and Markley, J. L.: 13C[13C] 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates, J. Am. Chem. Soc., 124, 3204–3205,
https://doi.org/10.1021/ja017733j, 2002.
Machonkin, T. E., Westler, W. M., and Markley, J. L.: Strategy for the Study
of Paramagnetic Proteins with Slow Electronic Relaxation Rates by NMR
Spectroscopy: Application to Oxidized Human [2Fe-2S] Ferredoxin, J. Am.
Chem. Soc., 126, 5413–5426, https://doi.org/10.1021/ja037077i, 2004.
Machonkin, T. E., Westler, W. M., and Markley, J. L.: Paramagnetic NMR
spectroscopy and density functional calculations in the analysis of the
geometric and electronic structures of iron-sulfur proteins, Inorg. Chem.,
44, 779–797, https://doi.org/10.1021/ic048624j, 2005.
Maio, N. and Rouault, T. A.: Outlining the Complex Pathway of Mammalian Fe-S
Cluster Biogenesis, Trends Biochem. Sci., 45, 411–426,
https://doi.org/10.1016/j.tibs.2020.02.001, 2020.
McDonald, C. C., Phillips, W. D., and Vinogradov, S. N.: Proton magnetic
resonance evidence for methionine-iron coordination in mammalian-type
ferrocytochrome c, Biochem. Bioph. Res. Co., 36, 442–449,
https://doi.org/10.1016/0006-291x(69)90584-1, 1969.
Ming, L.-J. and Valentine, J. S.: Insights into SOD1-linked amyotrophic
lateral sclerosis from NMR studies of Ni(2+)- and other
metal-ion-substituted wild-type copper-zinc superoxide dismutases, J. Biol. Inorg. Chem., 19, 647–657, https://doi.org/10.1007/s00775-014-1126-5, 2014.
Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Sabater, M., Xifra, G.,
Ricart, W., and Fernández-Real, J. M.: CISD1 in association with
obesity-associated dysfunctional adipogenesis in human visceral adipose
tissue, Obesity, 24, 139–147, https://doi.org/10.1002/oby.21334, 2016.
Mori, M., Jiménez, B., Piccioli, M., Battistoni, A., and Sette, M.: The
Solution Structure of the Monomeric Copper, Zinc Superoxide Dismutase from
Salmonella enterica: Structural Insights To Understand the Evolution toward
the Dimeric Structure, Biochemistry, 47, 12954–12963,
https://doi.org/10.1021/bi801252e, 2008.
Mori, M., Kateb, F., Bodenhausen, G., Piccioli, M., and Abergel, D.: Toward
structural dynamics: protein motions viewed by chemical shift modulations
and direct detection of C′N multiple-quantum relaxation, J. Am. Chem. Soc., 132, 3594–3600, https://doi.org/10.1021/ja9103556, 2010.
Nettesheim, D. G., Meyer, T. E., Feinberg, B. A., and Otvos, J. D.:
Comparative nuclear magnetic resonance studies of high potential iron-sulfur
proteins from Chromatium vinosum and Rhodopseudomonas gelatinosa, Additional
hyperfine shifted resonances and pH-dependent structural perturbations,
J. Biol. Chem., 258, 8235–8239, 1983.
Nitsche, C. and Otting, G.: Pseudocontact shifts in biomolecular NMR using
paramagnetic metal tags, Prog. Nucl. Mag. Res. Sp., 98–99, 20–49,
https://doi.org/10.1016/j.pnmrs.2016.11.001, 2017.
Oh, B. H. and Markley, J. L.: Multinuclear magnetic resonance studies of the
2Fe.2S∗ ferredoxin from Anabaena species strain PCC 7120, 3. Detection and
characterization of hyperfine-shifted nitrogen-15 and hydrogen-1 resonances
of the oxidized form, Biochemistry, 29, 4012–4017,
https://doi.org/10.1021/bi00468a031, 1990.
Ollagnier-De Choudens, S., Sanakis, Y., Hewitson, K. S., Roach, P., Baldwin,
J. E., Münck, E., and Fontecave, M.: Iron-sulfur center of biotin
synthase and lipoate synthase, Biochemistry, 39, 4165–4173, 2000.
Orton, H. W. and Otting, G.: Accurate Electron–Nucleus Distances from
Paramagnetic Relaxation Enhancements, J. Am. Chem. Soc., 140,
7688–7697, https://doi.org/10.1021/jacs.8b03858, 2018.
Ottiger, M., Delaglio, F., and Bax, A.: Measurement of J and dipolar
couplings from simplified two-dimensional NMR spectra, J. Magn. Reson., 131, 373–378, https://doi.org/10.1006/jmre.1998.1361, 1998.
Otting, G.: Protein NMR Using Paramagnetic Ions, Ann. Rev. Biophys., 39, 387–405, https://doi.org/10.1146/annurev.biophys.093008.131321, 2010.
Paddock, M. L., Wiley, S. E., Axelrod, H. L., Cohen, A. E., Roy, M.,
Abresch, E. C., Capraro, D., Murphy, A. N., Nechushtai, R., Dixon, J. E., and
Jennings, P. A.: MitoNEET is a uniquely folded 2Fe-2S outer mitochondrial
membrane protein stabilized by pioglitazone, P. Natl. Acad. Sci. USA,
104, 14342–14347, https://doi.org/10.1073/pnas.0707189104, 2007.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D.
M., Meng, E. C., and Ferrin, T. E.: UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605–1612,
https://doi.org/10.1002/jcc.20084, 2004.
Phillips, W. D., Poe, M., Weiher, J. F., McDonald, C. C., and Lovenberg, W.:
Proton Magnetic Resonance, Magnetic Susceptibility and Mössbauer Studies
of Clostridium pasteurianum Rubredoxin, Nature, 227, 574–577,
https://doi.org/10.1038/227574a0, 1970a.
Phillips, W. D., Poe, M., McDonald, C. C., and Bartsch, R. G.: Proton
magnetic resonance studies of Chromatium high-potential iron protein,
P. Natl. Acad. Sci. USA, 67, 682–687, https://doi.org/10.1073/pnas.67.2.682, 1970b.
Pochapsky, T. C., Kostic, M., Jain, N., and Pejchal, R.: Redox-Dependent
Conformational Selection in a Cys4Fe2S2 Ferredoxin, Biochemistry, 40, 5602–5614, https://doi.org/10.1021/bi0028845, 2001.
Poe, M., Phillips, W. D., McDonald, C. C., and Lovenberg, W.: Proton magnetic
resonance study of ferredoxin from Clostridium pasteurianum, P. Natl. Acad. Sci. USA, 65, 797–804, https://doi.org/10.1073/pnas.65.4.797, 1970.
Poe, M., Phillips, W. D., Glickson, J. D., McDonald, C. C., and Pietro, A.
S.: Proton magnetic resonance studies of the ferredoxins from spinach and
parsley, P. Natl. Acad. Sci. USA, 68, 68–71, https://doi.org/10.1073/pnas.68.1.68, 1971.
Rossi, P., Swapna, G. V. T., Huang, Y. J., Aramini, J. M., Anklin, C.,
Conover, K., Hamilton, K., Xiao, R., Acton, T. B., Ertekin, A., Everett, J.
K., and Montelione, G. T.: A microscale protein NMR sample screening
pipeline, J. Biomol. NMR, 46, 11–22, https://doi.org/10.1007/s10858-009-9386-z, 2010.
Rothery, R. A., Bertero, M. G., Cammack, R., Palak, M., Blasco, F.,
Strynadka, N. C. J., and Weiner, J. H.: The catalytic subunit of Escherichia
coli nitrate reductase A contains a novel [4Fe-4S] cluster with a high-spin
ground state, Biochemistry, 43, 5324–5333, https://doi.org/10.1021/bi049938l, 2004.
Rouault, T. A. and Tong, W. H.: Iron-sulfur cluster biogenesis and human
disease, Trends Genet., 24, 398–407, https://doi.org/10.1016/j.tig.2008.05.008, 2008.
Sacconi, L. and Bertini, I.: High-Spin Five-Coordinated 3D Metal Complexes
with Pentadentate Schiff Bases, J. Am. Chem. Soc., 88, 5180–5185,
https://doi.org/10.1021/ja00974a027, 1966.
Salem, A. F., Whitaker-Menezes, D., Howell, A., Sotgia, F., and Lisanti, M.
P.: Mitochondrial biogenesis in epithelial cancer cells promotes breast
cancer tumor growth and confers autophagy resistance, Cell Cycle, 11,
4174–4180, https://doi.org/10.4161/cc.22376, 2012.
Schmucker, S. and Puccio, H.: Understanding the molecular mechanisms of
Friedreich's ataxia to develop therapeutic approaches, Hum. Mol. Genet.,
19, 103–110, https://doi.org/10.1093/hmg/ddq165, 2010.
Skjeldal, L., Markley, J. L., Coghlan, V. M., and Vickery, L. E.: 1H NMR
spectra of vertebrate [2Fe-2S] ferredoxins, Hyperfine resonances suggest
different electron delocalization patterns from plant ferredoxins,
Biochemistry, 30, 9078–9083, https://doi.org/10.1021/bi00101a024, 1991.
Sohn, Y.-S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A. R.,
Harir, Y., Holt, S. H., Shulaev, V., Paddock, M. L., Hochberg, A.,
Cabanchick, I. Z., Onuchic, J. N., Jennings, P. A., Nechushtai, R., and
Mittler, R.: NAF-1 and mitoNEET are central to human breast cancer
proliferation by maintaining mitochondrial homeostasis and promoting tumor
growth, P. Natl. Acad. Sci. USA, 110, 14676–14681,
https://doi.org/10.1073/pnas.1313198110, 2013.
Solomon, I.: Relaxation Processes in a System of Two Spins, Phys. Rev.,
99, 559–565, https://doi.org/10.1103/PhysRev.99.559, 1955.
Spronk, C. A. E. M., Żerko, S., Górka, M., Koźmiński, W.,
Bardiaux, B., Zambelli, B., Musiani, F., Piccioli, M., Basak, P., Blum, F.
C., Johnson, R. C., Hu, H., Merrell, D. S., Maroney, M., and Ciurli, S.:
Structure and dynamics of Helicobacter pylori nickel-chaperone HypA: an
integrated approach using NMR spectroscopy, functional assays and
computational tools, J. Biol. Inorg. Chem., 23, 1309–1330,
https://doi.org/10.1007/s00775-018-1616-y, 2018.
Tasnim, H., Landry, A. P., Fontenot, C. R., and Ding, H.: Exploring the FMN
binding site in the mitochondrial outer membrane protein mitoNEET,
Free Radical Bio. Med., 156, 11–19,
https://doi.org/10.1016/j.freeradbiomed.2020.05.004, 2020.
Tirrell, T. F., Paddock, M. L., Conlan, A. R., Smoll, E. J., Nechushtai, R.,
Jennings, P. A., and Kim, J. E.: Resonance Raman Studies of the (His)(Cys)3
2Fe-2S Cluster of MitoNEET: Comparison to the (Cys)4 Mutant and Implications
of the Effects of pH on the Labile Metal Center, Biochemistry, 48,
4747–4752, https://doi.org/10.1021/bi900028r, 2009.
Trindade, I. B., Invernici, M., Cantini, F., Louro, R. O., and Piccioli, M.:
PRE-driven protein NMR structures: an alternative approach in highly
paramagnetic systems, FEBS J., online first, https://doi.org/10.1111/febs.15615, 2020.
Trindade, I. B., Hernandez, G., Lebègue, E., Barrière, F., Cordeiro,
T., Piccioli, M., and Louro, R. O.: Conjuring up a ghost: structural and
functional characterization of FhuF, a ferric siderophore reductase from E.
coli, J. Biol. Inorg. Chem., online first, https://doi.org/10.1007/s00775-021-01854-y, 2021.
Vernay, A., Marchetti, A., Sabra, A., Jauslin, T. N., Rosselin, M., Scherer,
P. E., Demaurex, N., Orci, L., and Cosson, P.: MitoNEET-dependent formation
of intermitochondrial junctions, P. Natl. Acad. Sci. USA, 114, 8277–8282, https://doi.org/10.1073/pnas.1706643114, 2017.
Wang, Y., Landry, A. P., and Ding, H.: The mitochondrial outer membrane
protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2
to oxygen or ubiquinone, J. Biol. Chem., 292, 10061–10067,
https://doi.org/10.1074/jbc.M117.789800, 2017.
Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E.:
MitoNEET is an iron-containing outer mitochondrial membrane protein that
regulates oxidative capacity, P. Natl. Acad. Sci. USA, 104, 5318–5323,
https://doi.org/10.1073/pnas.0701078104, 2007.
Wüthrich, K.: High-resolution proton nuclear magnetic resonance
spectroscopy of cytochrome, P. Natl. Acad. Sci. USA, 63, 1071–1078,
https://doi.org/10.1073/pnas.63.4.1071, 1969.
Xia, B., Volkman, B. F., and Markley, J. L.: Evidence for
oxidation-state-dependent conformational changes in human ferredoxin from
multinuclear, multidimensional NMR spectroscopy, Biochemistry, 37,
3965–3973, https://doi.org/10.1021/bi972722h, 1998.
Xia, B., Pikus, J. D., Xia, W., McClay, K., Steffan, R. J., Chae, Y. K.,
Westler, W. M., Markley, J. L., and Fox, B. G.: Detection and classification
of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase, Biochemistry, 38, 727–739, https://doi.org/10.1021/bi981851a, 1999.
Xia, B., Jenk, D., LeMaster, D. M., Westler, W. M., and Markley, J. L.:
Electron-nuclear interactions in two prototypical [2Fe-2S] proteins:
selective (chiral) deuteration and analysis of 1H and 2H NMR signals
from the alpha and beta hydrogens of cysteinyl residues that ligate the iron
in the active sites of human ferredoxin and Anabaena 7120 vegetative
ferredoxin, Arch. Biochem. Biophys., 373, 328–334,
https://doi.org/10.1006/abbi.1999.1576, 2000.
Yonutas, H. M., Hubbard, W. B., Pandya, J. D., Vekaria, H. J., Geldenhuys,
W. J., and Sullivan, P. G.: Bioenergetic restoration and neuroprotection
after therapeutic targeting of mitoNEET: New mechanism of pioglitazone
following traumatic brain injury, Exp. Neurol., 327, 113243,
https://doi.org/10.1016/j.expneurol.2020.113243, 2020.
Zhou, T., Lin, J., Feng, Y., and Wang, J.: Binding of Reduced Nicotinamide
Adenine Dinucleotide Phosphate Destabilizes the Iron-Sulfur Clusters of
Human MitoNEET, Biochemistry, 49, 9604–9612,
https://doi.org/10.1021/bi101168c, 2010.
Zuris, J. A., Harir, Y., Conlan, A. R., Shvartsman, M., Michaeli, D., Tamir,
S., Paddock, M. L., Onuchic, J. N., Mittler, R., Cabantchik, Z. I.,
Jennings, P. A., and Nechushtai, R.: Facile transfer of [2Fe-2S] clusters
from the diabetes drug target mitoNEET to an apo-acceptor protein, P. Natl. Acad. Sci. USA, 108, 13047–13052, https://doi.org/10.1073/pnas.1109986108, 2011.
Short summary
The iron–sulfur cluster binding properties of human mitoNEET have been investigated by 1D and 2D 1H paramagnetic NMR spectroscopy. The NMR spectra of both oxidized and reduced mitoNEET are significantly different from those reported previously for other [Fe2S2] proteins. Our findings revealed the unique electronic properties of mitoNEET and suggests that the specific electronic structure of the cluster possibly drives the functional properties of different [Fe2S2] proteins.
The iron–sulfur cluster binding properties of human mitoNEET have been investigated by 1D and 2D...
Special issue