Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-265-2021
https://doi.org/10.5194/mr-2-265-2021
Research article
 | 
06 May 2021
Research article |  | 06 May 2021

An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution

Sven Jovanovic, P. Philipp M. Schleker, Matthias Streun, Steffen Merz, Peter Jakes, Michael Schatz, Rüdiger-A. Eichel, and Josef Granwehr

Related authors

Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column
Y. Rothfuss, S. Merz, J. Vanderborght, N. Hermes, A. Weuthen, A. Pohlmeier, H. Vereecken, and N. Brüggemann
Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015,https://doi.org/10.5194/hess-19-4067-2015, 2015
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Instrumentation
A portable NMR platform with arbitrary phase control and temperature compensation
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022,https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021,https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields
Timothy J. Keller and Thorsten Maly
Magn. Reson., 2, 117–128, https://doi.org/10.5194/mr-2-117-2021,https://doi.org/10.5194/mr-2-117-2021, 2021
Short summary
ArduiTaM: accurate and inexpensive NMR auto tune and match system
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020,https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary

Cited articles

Abbott, T. M., Buchanan, G. W., Kruus, P., and Lee, K. C.: 13C nuclear magnetic resonance and Raman investigations of aqueous carbon dioxide systems, Can. J. Chem., 60, 1000–1006, https://doi.org/10.1139/v82-149, 1982. a, b
Albert, K., Dreher, E.-L., Straub, H., and Rieker, A.: Monitoring electrochemical reactions by13C NMR spectroscopy, Magn. Reson. Chem., 25, 919–922, https://doi.org/10.1002/mrc.1260251017, 1987. a, b
Bain, A. D. and Cramer, J. A.: Optimal NMR measurements for slow exchange in two-site and three-site systems, J. Phys. Chem., 97, 2884–2887, https://doi.org/10.1021/j100114a010, 1993. a, b
Bañares, M. A.: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions, Catal. Today, 100, 71–77, https://doi.org/10.1016/j.cattod.2004.12.017, 2005. a
Baruch, M. F., Pander, J. E., White, J. L., and Bocarsly, A. B.: Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy, ACS Catalysis, 5, 3148–3156, https://doi.org/10.1021/acscatal.5b00402, 2015. a
Download
Short summary
This work presents a setup for the investigation of electrochemical processes during operation (in operando) using nuclear magnetic resonance (NMR) spectroscopy. The setup was designed to minimize the interferences between the NMR instrument and the electrochemical equipment. Employing this setup, the dynamic equilibrium of carbon dioxide in aqueous bicarbonate electrolyte has been monitored in operando, revealing intercations with the electrode setup.