Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-265-2021
© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.
An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution
Related authors
Related subject area
Field: Liquid-state NMR | Topic: Instrumentation
A portable NMR platform with arbitrary phase control and temperature compensation
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields
Magn. Reson., 3, 77–90, 2022
Magn. Reson., 2, 117–128, 2021
Cited articles
Abbott, T. M., Buchanan, G. W., Kruus, P., and Lee, K. C.:
13C nuclear magnetic resonance and Raman investigations of
aqueous carbon dioxide systems, Can. J. Chem., 60,
1000–1006, https://doi.org/10.1139/v82-149, 1982. a, b
Albert, K., Dreher, E.-L., Straub, H., and Rieker, A.: Monitoring
electrochemical reactions by13C NMR spectroscopy, Magn.
Reson. Chem., 25, 919–922, https://doi.org/10.1002/mrc.1260251017, 1987. a, b
Bain, A. D. and Cramer, J. A.: Optimal NMR measurements for slow exchange in
two-site and three-site systems, J. Phys. Chem., 97,
2884–2887, https://doi.org/10.1021/j100114a010, 1993. a, b
Bañares, M. A.: Operando methodology: combination of in situ spectroscopy and
simultaneous activity measurements under catalytic reaction conditions,
Catal. Today, 100, 71–77, https://doi.org/10.1016/j.cattod.2004.12.017, 2005. a
Baruch, M. F., Pander, J. E., White, J. L., and Bocarsly, A. B.: Mechanistic
Insights into the Reduction of CO2 on Tin Electrodes using in Situ
ATR-IR Spectroscopy, ACS Catalysis, 5, 3148–3156,
https://doi.org/10.1021/acscatal.5b00402, 2015. a