Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-387-2021
https://doi.org/10.5194/mr-2-387-2021
Research article
 | 
04 Jun 2021
Research article |  | 04 Jun 2021

A novel sample handling system for dissolution dynamic nuclear polarization experiments

Thomas Kress, Kateryna Che, Ludovica M. Epasto, Fanny Kozak, Mattia Negroni, Gregory L. Olsen, Albina Selimovic, and Dennis Kurzbach

Related subject area

Field: Hyperpolarization | Topic: Instrumentation
Light-coupled cryogenic probes to detect low-micromolar samples and allow for an automated NMR platform
Wolf Wüster, Pit Gebbers, Alois Renn, Matthias Bütikofer, Sophie Rüdiger, Roland P. Riek, and Felix Torres
Magn. Reson., 5, 61–67, https://doi.org/10.5194/mr-5-61-2024,https://doi.org/10.5194/mr-5-61-2024, 2024
Short summary
Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles
Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst
Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022,https://doi.org/10.5194/mr-3-203-2022, 2022
Short summary
A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution
Karel Kouřil, Michel Gramberg, Michael Jurkutat, Hana Kouřilová, and Benno Meier
Magn. Reson., 2, 815–825, https://doi.org/10.5194/mr-2-815-2021,https://doi.org/10.5194/mr-2-815-2021, 2021
Short summary
Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry–Pérot type microwave resonator
Alexey Fedotov, Ilya Kurakin, Sebastian Fischer, Thomas Vogl, Thomas F. Prisner, and Vasyl Denysenkov
Magn. Reson., 1, 275–284, https://doi.org/10.5194/mr-1-275-2020,https://doi.org/10.5194/mr-1-275-2020, 2020
Short summary

Cited articles

Abragam, A. and Goldman, M.: Principles of Dynamic Nuclear-Polarization, Rep. Prog. Phys., 41, 395–467, https://doi.org/10.1088/0034-4885/41/3/002, 1978. 
Ardenkjær-Larsen, J. H., Bowen, S., Petersen, J. R., Rybalko, O., Vinding, M. S., Ullisch, M., and Nielsen, N. C.: Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T, Magn. Reson. Med., 81, 2184–2194, https://doi.org/10.1002/mrm.27537, 2019. 
Ardenkjær-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Golman K.: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR, P. Natl. Acad. Sci. USA, 100, 10158–10163, https://doi.org/10.1073/pnas.1733835100, 2003. 
Baudin, M., Vuichoud, B., Bornet, A., Milani, J., Bodenhausen, G., and Jannin, S.: A Cryogen-Free 9.4 T System for Dynamic Nuclear Polarization, J. Magn. Reson., 294, 115–121, https://doi.org/10.1016/j.jmr.2018.07.001, 2018. 
Boeg, P. A., Duus, J. Ø., Ardenkjær-Larsen, J. H., Karlsson, M., and Mossin, S.: Real-Time Detection of Intermediates in Rhodium-Catalyzed Hydrogenation of Alkynes and Alkenes by Dissolution DNP, J. Chem. Phys. C, 123, 9949–9956, https://doi.org/10.1021/acs.jpcc.9b01376, 2019. 
Download
Short summary
We present a system for facilitated sample vitrification, melting, and transfer in dissolution dynamic nuclear polarization experiments. The system enables insertion of a sample through an airlock in combination with a dedicated dissolution system that is inserted through the same airlock shortly before the melting event. The cryostat can thus be operated continuously at low temperatures, and the melting process is rapid as no pressurization steps of the cryostat are necessary for dissolution.