Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simple rules for resolved level-crossing spectra in magnetic field effects on reaction yields
Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
Novosibirsk State University, Novosibirsk, 630090, Russia
Victor A. Bagryansky
Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
Yuri N. Molin
Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk,
630090, Russia
Cited articles
Anishchik, S. V. and Ivanov, K. L.: Sensitive detection of level anticrossing
spectra of nitrogen vacancy centers in diamond, Phys. Rev. B, 96, 115142,
https://doi.org/10.1103/PhysRevB.96.115142, 2017.
Anishchik, S. V. and Ivanov, K. L.: A method for simulating level
anti-crossing spectra of diamond crystals containing NV− color centers,
J. Magn. Reson., 305, 67–76, https://doi.org/10.1016/j.jmr.2019.06.002, 2019.
Anisimov, O. A., Grigoryants, V. M., Kiyanov, S. V., Salikhov, K. M., Sukhenko, S. A., and Molin, Y. N.: Influence of magnetic field on recombination fluorescence
in nonpolar solutions of hexafluorobenzene, Theor. Exp. Chem., 18, 256–261,
https://doi.org/10.1007/BF00519845, 1983.
Astilean, S., Chitta, V., Corval, A., Miller, R. J. D., and Trommsdorff, H. P.: Singlet-triplet level crossing in matrix-isolated pentacene, Chem. Phys.
Lett., 219, 95–100, https://doi.org/10.1016/0009-2614(94)00064-6, 1994.
Babcock, N. S. and Kattnig, D. R.: Electron–electron dipolar interaction poses a challenge to the radical pair mechanism of magnetoreception,
J. Phys. Chem. Lett., 11, 2414–2421, https://doi.org/10.1021/acs.jpclett.0c00370, 2020.
Bagryansky, V. A., Molin, Y. N., Egorov, M. P., and Nefedov, O. M.: The first
experimental detection, by OD ESR spectroscopy, of radical anions of siloles
and germoles bearing hydrogen and chlorine substituents attached to
heteroatom, Mendeleev Comm., 8, 236–237,
https://doi.org/10.1070/MC1998v008n06ABEH001053, 1998.
Bagryansky, V. A., Usov, O. M., Borovkov, V. I., Kobzeva, T. V., and Molin, Y. N.: Quantum beats in recombination of spin-correlated radical ion pairs with equivalent protons, Chem. Phys., 255, 237–245,
https://doi.org/10.1016/S0301-0104(00)00078-1, 2000.
Baranov, P. G. and Romanov, N. G.: Magnetic resonance in micro- and
nanostructures, Appl. Magn. Reson., 21, 165–193,
https://doi.org/10.1007/BF03162450, 2001.
Bargon, J., Fischer, H., and Johnsen, U.: Nuclear magnetic resonance
emission lines during fast radical reactions, I. Recording methods and
examples, Z. Naturforsch. A, 22, 1551–1555,
https://doi.org/10.1515/zna-1967-1014, 1967.
Borovkov, V. I., Bagryansky, V. A., Molin, Y. N., Egorov, M. P., and Nefedov,
O. M.: Detection of radical cations of Group 14 element organometallics in
alkane solutions using the method of time-resolved magnetic field effect,
Phys. Chem. Chem. Phys., 5, 2027–2033, https://doi.org/10.1039/B212300B,
2003.
Breit, G. and Rabi, I. I., Measurement of nuclear spin, Phys. Rev., 38,
2082–2083, https://doi.org/10.1103/PhysRev.38.2082.2, 1931.
Brocklehurst, B.: Spin correlation in the geminate recombination of radical
ions in hydrocarbons – Part I. Theory of the magnetic field effect,
J. Chem. Soc. Farad. T. 2, 72, 1869–1884, https://doi.org/10.1039/F29767201869,
1976.
Brocklehurst, B.: Simulation of magnetic field effects: resonances due to g
value differences in radical pairs, Mol. Phys., 96, 283–291,
https://doi.org/10.1080/00268979909482961, 1999.
Closs, G. L.: Mechanism explaining nuclear spin polarizations in radical
combination reactions, J. Am. Chem. Soc., 91, 4552–4554,
https://doi.org/10.1021/ja01044a043, 1969.
Dupont-Roc, J., Haroche, S., and Cohen-Tannoudji, J. C.: Detection of very weak magnetic fields (10−9 Gauss) by 87Rb zero field level crossing
resonances, Phys. Lett., 25, 638–639,
https://doi.org/10.1016/0375-9601(69)90480-0, 1969.
Eck, T. G., Foldy, L. L., and Wieder, H.: Observation of anticrossing in optical resonance fluorescence, Phys. Rev. Lett., 10, 239–242,
https://doi.org/10.1103/PhysRevLett.10.239, 1963.
Efimova, O. and Hore, P. J.: Role of exchange and dipolar interactions in the
radical pair model of the avian magnetic compass, Biophys. J., 94,
1565–1574, https://doi.org/10.1529/biophysj.107.119362, 2008.
Efimova, O. and Hore, P. J.: Evaluation of nuclear quadrupole interactions as a source of magnetic anisotropy in the radical pair model of the avian
magnetic compass, Mol. Phys., 107, 665–671,
https://doi.org/10.1080/00268970902852624, 2009.
Fischer, H.: The effect of a magnetic field on the product yield of a
geminate radical-pair reaction in homogeneous solution, Chem. Phys. Lett.,
100, 255–258, https://doi.org/10.1016/0009-2614(83)87287-X, 1983.
Fessenden, R. W.: Second-order splittings in the ESR spectra of organic
radicals, J. Chem. Phys., 37, 747–750, https://doi.org/10.1063/1.1733156,
1962.
Grigoryants, V. M., McGrane, S. D., and Lipsky, S.: Magnetic-field effects on
the recombination fluorescence of anthracene cation and perfluorocarbon
anions, J. Chem. Phys., 109, 7354–7361, https://doi.org/10.1063/1.477341,
1998.
Hamilton, C. A., McLauchlan, K. A., and Peterson, K. R.: J-Resonances in MARY
and RYDMR spectra from freely diffusing radical ion pairs, Chem. Phys.
Lett., 162, 145–151, https://doi.org/10.1016/0009-2614(89)85083-3, 1989.
Hanle, W.: Über Magnetische Beeinflussung der Polarisation der Resonanz
Floureszens, Z. Phys., 30, 93–105, https://doi.org/10.1007/BF01331827, 1924.
Hayashi, H.: Introduction to Dynamic Spin Chemistry: Magnetic Field Effects
on Chemical and Biochemical Reactions, World Scientific Lecture And Course
Notes In Chemistry, World Scientific Publishing Company, Singapore, 268 pp.,
2004.
Ito, F., Ikoma, T., Akiyama, K., Kobori, Y., and Tero-Kubota, S.: Long-range
jump versus stepwise hops: Magnetic field effects on the charge-transfer
fluorescence from photoconductive polymer films, J. Am. Chem. Soc., 125, 4722–4723, https://doi.org/10.1021/ja029443o, 2003.
Ivanov, K. L., Pravdivtsev, A. N., Yurkovskaya, A. V., Vieth, H.-M., and Kaptein, R.: The role of level anti-crossings in nuclear spin hyperpolarization, Prog. Nucl. Mag. Res. Sp., 81, 1–36,
https://doi.org/10.1016/j.pnmrs.2014.06.001, 2014.
Kalneus, E. V., Stass, D. V., and Molin, Y. N.: Typical applications of MARY
spectroscopy: Radical ions of substituted benzenes, Appl. Magn. Reson.,
28, 213–229, https://doi.org/10.1007/BF03166757, 2005.
Kalneus, E. V., Stass, D. V., Ivanov, K. L., and Molin, Y. N.: A MARY study of radical anions of fluorinated benzenes, Mol. Phys., 104, 1751–1763,
https://doi.org/10.1080/00268970600635438, 2006a.
Kalneus, E. V., Kipriyanov Jr., A. A., Purtov, P. A., Stass, D. V., and Molin, Y. N.: Specific MARY spectrum from radical anion of pentafluorobenzene, Appl. Magn. Reson., 30, 549–554, https://doi.org/10.1007/BF03166217, 2006b.
Kalneus, E. V., Kipriyanov Jr., A. A., Purtov, P. A., Stass, D. V., and Molin, Y. N.: Resolved MARY spectra for systems with nonequivalent magnetic nuclei, Dokl. Phys. Chem., 415, 170–173, https://doi.org/10.1134/S0012501607070020,
2007.
Kaptein, R.: Simple rules for chemically induced dynamic nuclear
polarization, J. Chem. Soc. Chem. Comm., 14, 732–733,
https://doi.org/10.1039/C29710000732, 1971.
Kaptein, R. and Oosterhoff, L. J.: Chemically induced dynamic nuclear
polarization III (anomalous multiplets of radical coupling and
disproportionation products), Chem. Phys. Lett., 4, 214–216,
https://doi.org/10.1016/0009-2614(69)80105-3, 1969.
Kattnig, D. R. and Hore, P. J.: The sensitivity of a radical pair compass
magnetoreceptor can be significantly amplified by radical scavengers,
Sci. Rep.-UK, 7, 11640, https://doi.org/10.1038/s41598-017-09914-7, 2017.
Kattnig, D. R., Solov'yov, I. A., and Hore, P. J.: Electron spin relaxation in cryptochrome-based magnetoreception, Phys. Chem. Chem. Phys., 18,
12443–12456, https://doi.org/10.1039/C5CP06731F, 2016a.
Kattnig, D. R., Sowa, J. K., Solov'yov, I. A., and Hore, P. J.: Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor, New J. Phys., 18, 063007, https://doi.org/10.1088/1367-2630/18/6/063007, 2016b.
Keens, R. H., Bedkihal, S., and Kattnig, D. R.: Magnetosensitivity in dipolarly coupled three-spin systems, Phys. Rev. Lett., 121, 096001,
https://doi.org/10.1103/PhysRevLett.121.096001, 2018.
Kothe, G., Yago, T., Weidner, J.-U., Link, G., Lukaschek, M., and Lin, T.-S.:
Quantum oscillations and polarization of nuclear spins in photoexcited
triplet states, J. Phys. Chem. B, 114, 14755–14762,
https://doi.org/10.1021/jp103508t, 2010.
Lau, J. C. S., Wagner-Rundell, N., Rodgers, C. T., Green, N. J. B., and Hore, P. J.: Effects of disorder and motion in a radical pair magnetoreceptor,
J. R. Soc. Interface, 7, 257–264, https://doi.org/10.1098/rsif.2009.0399.focus,
2010.
Levy, D. H.: Molecular level anticrossing in the CN radical, J. Chem. Phys.,
56, 5493–5499, https://doi.org/10.1063/1.1677066, 1972.
Lukzen, N. N., Usov, O. M., and Molin, Y. N.: Magnetic field effects in the
recombination fluorescence of a three-spin radical ion/biradical ion system,
Phys. Chem. Chem. Phys., 4, 5249–5258, https://doi.org/10.1039/B206968G,
2002.
Magin, I. M., Purtov, P. A., Kruppa, A. I., and Leshina, T. V.: Modeling magnetic
field effects in multispin systems, Appl. Magn. Reson., 26, 155–170,
https://doi.org/10.1007/BF03166569, 2004.
Magin, I. M., Purtov, P. A., Kruppa, A. I., and Leshina, T. V.: Peculiarities of
magnetic and spin effects in a biradical/stable radical complex (three-spin
system), Theory and comparison with experiment, J. Phys. Chem. A., 109,
7396–7401, https://doi.org/10.1021/jp051115y, 2005.
Magin, I. M., Kruppa, A. I., and Purtov, P. A.: Peculiarities of magnetic field and
spin effects in a three-spin system with regard to the long-distance
character of exchange interaction, Chem. Phys., 365, 80–84,
https://doi.org/10.1016/j.chemphys.2009.10.006, 2009.
Miesel, K., Ivanov, K. L., Yurkovskaya, A. V., and Vieth, H.-M.: Coherence
transfer during field-cycling NMR experiments, Chem. Phys. Lett., 425,
71–76, https://doi.org/10.1016/j.cplett.2006.05.025, 2006.
Pichugina, T. I. and Stass, D. V.: The role of active crossings in the
development of MARY signals in the spin system of a radical pair, Appl.
Magn. Reson., 38, 179–186, https://doi.org/10.1007/s00723-009-0108-1, 2010.
Pravdivtsev, A. N., Yurkovskaya, A. V., Vieth, H.-M., Ivanov, K. L., and Kaptein, R.: Level anti-crossings is a key factor to understanding para-hydrogen
induced hyperpolarization in SABRE experiments, ChemPhysChem, 14,
3327–3331, https://doi.org/10.1002/cphc.201300595, 2013.
Saik, V. O., Ostafin, A. E., and Lipsky, S.: Magnetic field effects on
recombination fluorescence in liquid iso-octane, J. Chem. Phys., 103,
7347–7358, https://doi.org/10.1063/1.470307, 1995.
Salikhov, K. M.: Creation of spin coherent states in the course of chemical
reactions, Chem. Phys. Lett., 201, 261–264,
https://doi.org/10.1016/0009-2614(93)85067-X, 1993.
Salikhov, K. M. Molin, Y. N., Sagdeev, R. Z., and Buchachenko, A. L.: Spin
Polarization and Magnetic Effects in Chemical Reactions, Elsevier,
Amsterdam, The Netherlands, 1984.
Salikhov, K. M., Sakaguchi, Y., and Hayashi, H.: A contribution to the theory of
OD EPR of spin-correlated radical pairs, Chem. Phys., 220, 355–371,
https://doi.org/10.1016/S0301-0104(97)00115-8, 1997.
Sannikova, V. A., Davydova, M. P., Sherin, P. S., Babenko, S. V., Korolev, V. V., Stepanov, A. A., Nikul'shin, P. V., Kalneus, E. V., Vasilevsky, S. F., Benassi, E., and Melnikov, A. R.: Determination of hyperfine coupling constants of fluorinated diphenylacetylene radical anions by magnetic field-affected reaction yield spectroscopy, J. Phys. Chem. A, 123, 505–516,
https://doi.org/10.1021/acs.jpca.8b10306, 2019.
Schulten, K. and Wolynes, P. G.: Semiclassical description of electron spin
motion in radicals including the effect of electron hopping, J. Chem. Phys.,
68, 3292–3297, https://doi.org/10.1063/1.436135, 1978.
Sergey, N. V., Verkhovlyuk, V. N., Kalneus, E. V., Korolev, V. V., Melnikov,
A. R., Burdukov, A. B., Stass, D. V., and Molin, Y. N.: Registration of radical
anions of Al, Ga, In tris-8-oxyquinolinates by magnetosensitive and
spectrally resolved recombination luminescence in benzene solutions, Chem.
Phys. Lett., 552, 32–37, https://doi.org/10.1016/j.cplett.2012.08.069,
2012.
Shkrob, I. A., Tarasov, V. F., and Buchachenko, A. L.: Electron spin exchange in micellized radical pairs, II. Magnetic field and magnetic isotope effects in multinuclear pairs, Chem. Phys., 153, 443–455,
https://doi.org/10.1016/0301-0104(91)80057-O, 1991.
Shokhirev, N. V., Korolenko, E. C., Taraban, M. B., and Leshina, T. V.: Anomalous magnetic effects. The role of association in the recombination of singlet radical pairs in liquids, Chem. Phys., 154, 237–244,
https://doi.org/10.1016/0301-0104(91)80075-S, 1991.
Silvers, S. J., Bergmann, T. H., and Klemperer, W.: Level crossing and double
resonance on the A1π state of CS, J. Chem. Phys., 52, 4385–4399,
https://doi.org/10.1063/1.1673661, 1970.
Sosnovsky, D. V., Jeschke, G., Matysik, J., Vieth, H.-M., and Ivanov, K. L.:
Level crossing analysis of chemically induced dynamic nuclear polarization:
Towards a common description of liquid-state and solid-state cases, J. Chem.
Phys., 144, 144202, https://doi.org/10.1063/1.4945341, 2016.
Stass, D. V.: On algebraic properties of the sub-block of zero field
hyperfine Hamiltonian with penultimate total spin projection for arbitrary
hyperfine structure, and field dependence of radical pair recombination
probability in the vicinity of zero field, J. Chem. Phys., 151, 184112,
https://doi.org/10.1063/1.5127217, 2019.
Stass, D. V., Lukzen, N. N., Tadjikov, B. M., and Molin, Y. N.: Manifestation
of quantum coherence upon recombination of radical ion pairs in weak
magnetic fields, Systems with non-equivalent nuclei, Chem. Phys. Lett., 233,
444–450, https://doi.org/10.1016/0009-2614(94)01489-I, 1995a.
Stass, D. V., Tadjikov, B. M., and Molin, Y. N.: Manifestation of quantum
coherence upon recombination of radical ion pairs in weak magnetic fields,
Systems with equivalent nuclei, Chem. Phys. Lett., 235, 511–516,
https://doi.org/10.1016/0009-2614(95)00135-Q, 1995b.
Stass, D. V., Lukzen, N. N., Tadjikov, B. M., Grigoryants, V. M., and Molin, Y. N.: Ion-molecular charge transfer reactions of hexafluorobenzene and cis
decalin in nonpolar solutions studied by linewidth broadening in MARY
spectra, Chem. Phys. Lett., 243, 533–539,
https://doi.org/10.1016/0009-2614(95)00891-7, 1995c.
Stass, D. V., Anishchik, S. V., and Verkhovlyuk, V. N.: Coherent spin control
of radiation-generated radical ion pairs in liquid alkanes, in: Selectivity,
Control, and Fine Tuning in High-Energy Chemistry, edited by: Stass, D. V.
and Feldman, V. I., Research Signpost, Trivandrum, India, 143–189, 2011.
Steiner, U. E. and Ulrich, T.: Magnetic field effects in chemical kinetics
and related phenomena, Chem. Rev., 89, 51–147,
https://doi.org/10.1021/cr00091a003, 1989.
Steiner, U. E., Schäfer, J., Lukzen, N. N., and Lambert, C.: Resonance
Line Shape of Magnetic Field-Affected Reaction Yield Spectrum from Charge
Recombination in a Linked Donor–Acceptor Dyad, J. Phys. Chem. C, 122,
11701–11708, https://doi.org/10.1021/acs.jpcc.8b02904, 2018.
Sukhenko, S. A., Purtov, P. A., and Salikhov, K. M.: The manifestation of energy level intersection for radical-pair spins in magnetic effects and in the effects of magnetic nuclear polarization, Sov. J. Chem. Phys., 2, 29–35,
1985.
Sviridenko, F. B., Stass, D. V., and Molin, Y. N.: Estimation of lifetimes of
solvent radical cations in liquid alkanes using the level crossing
spectroscopy technique, Chem. Phys. Lett., 297, 343–349,
https://doi.org/10.1016/S0009-2614(98)01099-9, 1998.
Tadjikov, B. M., Stass, D. V., and Molin, Y. N.: MARY-detected ESR spectra of
radical ions in liquid solutions for systems with crossing Zeeman levels,
Chem. Phys. Lett., 260, 529–532,
https://doi.org/10.1016/0009-2614(96)00929-3, 1996.
Tadjikov, B. M., Stass, D. V., Usov, O. M., and Molin, Y. N.: MARY-detected ESR
spectrum of radical cations (holes) in squalane, Chem. Phys. Lett., 273,
25–30, https://doi.org/10.1016/S0009-2614(97)00587-3, 1997.
Tadjikov, B. M., Astashkin, A. V., and Sakaguchi, Y.: Spin coherence effects
observed in the OD ESR spectra of radical pairs with strong hyperfine
interaction, Chem. Phys. Lett., 284, 214–220,
https://doi.org/10.1016/S0009-2614(97)01416-4, 1998.
Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., and Hore, P. J.: Effects of weak magnetic fields on free radical recombination reactions,
Mol. Phys., 95, 71–89, https://doi.org/10.1080/00268979809483134, 1998.
Usov, O. M., Stass, D. V., Tadjikov, B. M., and Molin, Y. N.: Highly mobile
solvent holes in viscous squalane solutions as detected by quantum beats and
MARY spectroscopy techniques, J. Phys. Chem. A, 101, 7711–7717,
https://doi.org/10.1021/jp970852u, 1997.
Veeman, W. S. and Van der Waals, J. H.: Levelanticrossing and cross-relaxation
in phosphorescent benzophenone crystals, Chem. Phys. Lett., 7, 65–69,
https://doi.org/10.1016/0009-2614(70)80250-0, 1970.
Verkhovlyuk, V. N., Lukzen, N. N., Pedersen, J. B., Stass, D. V., and Molin, Y. N.:
Hyperfine structure of the MARY spectrum for the three-spin system radical
ion/biradical ion in the region of J resonance, Dokl. Phys. Chem., 415,
311–313, https://doi.org/10.1134/S0012501607110061, 2007.
Wakasa, M., Kaise, M., Yago, T., Katoh, R., Wakikawa, Y., and Ikoma, T.:
What can be learned from magnetic field effects on singlet fission: Role of
exchange interaction in excited triplet pairs, J. Phys. Chem. C, 119,
25840–25844, https://doi.org/10.1021/acs.jpcc.5b10176, 2015.
Ward, H. R. and Lawler, R. G.: Nuclear magnetic resonance emission and
enhanced absorption in rapid organometallic reactions, J. Am. Chem. Soc.,
89, 5518–5519, https://doi.org/10.1021/ja00997a078, 1967.
Weller, A., Staerk, H., and Treichel, R.: Magnetic-field effects on geminate
radical-pair recombination, Faraday Discussions of the Chemical Society, 78, 271–278, https://doi.org/10.1039/DC9847800271, 1984.
Wieder, H. and Eck, T. G.: “Anticrossing” signals in resonance
fluorescence, Phys. Rev., 153, 103–112,
https://doi.org/10.1103/PhysRev.153.103, 1967.
Woodward, J. R., Foster, T. J., Salaoru, A. T., and Vink, C. B.: Direct observation
of f-pair magnetic field effects and time-dependence of radical pair
composition using rapidly switched magnetic fields and time-resolved
infrared methods, Phys. Chem. Chem. Phys., 10, 4020–4026,
https://doi.org/10.1039/B719454D, 2008.
Worster, S., Kattnig, D. R., and Hore, P. J.: Spin relaxation of radicals in
cryptochrome and its role in avian magnetoreception, J. Chem. Phys., 145,
035104, https://doi.org/10.1063/1.4958624, 2016.
Yago, T., Weidner, J.-U., Link, G., Lin, T.-S., and Kothe, G.: Quantum
oscillations in photo-excited triplet states in an external magnetic field,
Chem. Phys. Lett., 438, 351–357,
https://doi.org/10.1016/j.cplett.2007.03.031, 2007.
Short summary
In this work we explore how magnetic resonance information can be obtained from simple field dependencies of reaction yields for recombining radical pairs, without actually driving any resonance transitions. An ESR spectrum can be observed in the region of relatively weak but nonzero applied field due to interference in the coherently created spin system of the radical pair. We also discuss connections between the level (anti)crossing and conventional magnetic resonance spectroscopy.
In this work we explore how magnetic resonance information can be obtained from simple field...
Special issue