Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-2-843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR
Yulia Pustovalova
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
Frank Delaglio
Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
D. Levi Craft
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
Haribabu Arthanari
Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
Ad Bax
Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
Martin Billeter
Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, Gothenburg 405 30, Sweden
Mark J. Bostock
Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
Hesam Dashti
Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
D. Flemming Hansen
Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
Sven G. Hyberts
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
Bruce A. Johnson
Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
Krzysztof Kazimierczuk
Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
Hengfa Lu
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
Mark Maciejewski
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
Tomas M. Miljenović
Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, Queensland, Australia
Mehdi Mobli
Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, Queensland, Australia
Daniel Nietlispach
Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
Vladislav Orekhov
Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, Gothenburg 405 30, Sweden
Robert Powers
Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
Xiaobo Qu
Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
Scott Anthony Robson
Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
David Rovnyak
Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
Gerhard Wagner
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
Jinfa Ying
Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
Matthew Zambrello
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
Jeffrey C. Hoch
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
David L. Donoho
Department of Statistics, Stanford University, Stanford, CA 94305, USA
Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
Related authors
No articles found.
Sarah Kuschert, Martin Stroet, Yanni Ka-Yan Chin, Anne Claire Conibear, Xinying Jia, Thomas Lee, Christian Reinhard Otto Bartling, Kristian Strømgaard, Peter Güntert, Karl Johan Rosengren, Alan Edward Mark, and Mehdi Mobli
Magn. Reson., 4, 57–72, https://doi.org/10.5194/mr-4-57-2023, https://doi.org/10.5194/mr-4-57-2023, 2023
Short summary
Short summary
The 20 genetically encoded amino acids provide the basis for most proteins and peptides that make up the machinery of life. This limited repertoire is vastly expanded by the introduction of non-canonical amino acids (ncAAs). Studying the structure of protein-containing ncAAs requires new computational representations that are compatible with existing modelling software. We have developed an online tool for this to aid future structural studies of this class of complex biopolymer.
Kumaran Baskaran, Colin W. Wilburn, Jonathan R. Wedell, Leonardus M. I. Koharudin, Eldon L. Ulrich, Adam D. Schuyler, Hamid R. Eghbalnia, Angela M. Gronenborn, and Jeffrey C. Hoch
Magn. Reson., 2, 765–775, https://doi.org/10.5194/mr-2-765-2021, https://doi.org/10.5194/mr-2-765-2021, 2021
Short summary
Short summary
The Biological Magnetic Resonance Data Bank (BMRB) has been used to identify overall trends, for example, the relationship between chemical shift and backbone conformation. The BMRB archive has grown so that statistical outliers are sufficiently numerous to afford insights into unusual or unique structural features in proteins. We analyze amide proton chemical shift outliers to gain insights into the occurrence of hydrogen bonds between an amide NH and the p-pi cloud of aromatic sidechains.
Angus J. Robertson, Jinfa Ying, and Ad Bax
Magn. Reson., 2, 129–138, https://doi.org/10.5194/mr-2-129-2021, https://doi.org/10.5194/mr-2-129-2021, 2021
Short summary
Short summary
NMR study of large proteins such as SARS-CoV-2 Main Protease can be challenging when exchange broadening, multiple stable conformations, and back-exchanging the fully deuterated chain pose problems. We demonstrate that 4D NMR, including an extension of 3D NOE-NOE spectroscopy, provides an effective tool for spectral analysis. In combination with X-ray coordinates, the 4D NMR data are particularly useful for extending and validating assignments and for probing structural features.
Related subject area
Field: Liquid-state NMR | Topic: Signal processing methods
Application of multiplet structure deconvolution to extract scalar coupling constants from 1D nuclear magnetic resonance spectra
Damien Jeannerat and Carlos Cobas
Magn. Reson., 2, 545–555, https://doi.org/10.5194/mr-2-545-2021, https://doi.org/10.5194/mr-2-545-2021, 2021
Short summary
Short summary
Nuclear magnetic resonance spectroscopy is at the forefront of analytical methods used in organic chemistry and phytochemistry. Multiplet structure deconvolution has been revisited in the perspective of a robust integration in the computer-assisted workflow of 1D spectra analysis. New features include the management of coupling partners with spin > 1/2, second-order effects and partial signal overlap.
Cited articles
Amstutz, P., Crusoe, M. R., Tijanić, N., Chapman, B., Chilton, J., Heuer,
M., Kartashov, A., Kern, J., Leehr, D., Ménager, H., Nedeljkovich, M.,
Scales, M., Soiland-Reyes, S., and Stojanovic, L.: Common Workflow Language,
v1.0, figshare [data set], https://doi.org/10.6084/m9.figshare.3115156.v2, 2016. a
Barna, J. C. and Laue, E. D.: Conventional and exponential sampling for 2D
NMR experiments with application to a 2D NMR spectrum of a protein,
J. Magn. Reson., 75, 384–389,
https://doi.org/10.1016/0022-2364(87)90047-3, 1987. a
Billeter, M. and Orekhov, V.: Novel sampling approaches in higher dimensional
NMR, vol. 316, Springer Science & Business Media, Heidelberg, https://doi.org/10.1007/978-3-642-27160-1, 2012. a
Bodenhausen, G. and Ernst, R.: The accordion experiment, a simple approach to
three-dimensional NMR spectroscopy, J. Magn. Reson., 45,
367–373, 1981. a
Bostock, M. and Nietlispach, D.: Compressed sensing: Reconstruction of
non-uniformly sampled multidimensional NMR data, Concepts Magn.
Reson. A, 46, e21438, https://doi.org/10.1002/cmr.a.21438, 2017. a, b
Bostock, M. J., Holland, D. J., and Nietlispach, D.: Compressed sensing
reconstruction of undersampled 3D NOESY spectra: application to large
membrane proteins, J. Biomol. NMR, 54, 15–32, 2012. a
Candes, E. J., Wakin, M. B., and Boyd, S. P.: Enhancing sparsity by reweighted
ℓ1 minimization, J. Fourier Anal. Appl., 14,
877–905, 2008. a
Chylla, R. A. and Markley, J. L.: Theory and application of the maximum
likelihood principle to NMR parameter estimation of multidimensional NMR
data, J. Biomol. NMR, 5, 245–258, 1995. a
Craft, D. L., Sonstrom, R. E., Rovnyak, V. G., and Rovnyak, D.: Nonuniform
sampling by quantiles, J. Magn. Reson., 288, 109–121, 2018. a
Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J., and Bax, A.:
NMRPipe: A multidimensional spectral processing system based on UNIX
pipes, J. Biomol. NMR, 6, 277–293, https://doi.org/10.1007/bf00197809, 1995. a, b, c
Donoho, D. L.: De-noising by soft-thresholding, IEEE T.
Inform. Theory, 41, 613–627, 1995. a
Donoho, D. L.: Compressed sensing, IEEE T.
Inform. Theory, 52,
1289–1306, 2006. a
Ernst, R. R.: Without Computers – No Modern NMR, in:
Computational Aspects of the Study of Biological Macromolecules by Nuclear
Magnetic Resonance Spectroscopy, , Springer, Boston, MA, USA, 1–25,
https://doi.org/10.1007/978-1-4757-9794-7_1, 1991. a
Ernst, R. R.: Nuclear Magnetic Resonance Fourier Transform Spectroscopy, in:
Nobel Lectures, Chemistry 1991–1995, edited by: Malmström, B. G., World
Scientific Publishing Company, Singapore, 1997. a
Gołowicz, D., Kasprzak, P., Orekhov, V., and Kazimierczuk, K.: Fast
time-resolved NMR with non-uniform sampling, Prog. Nucl. Mag.
Res. Sp., 116, 40–55,
https://doi.org/10.1016/j.pnmrs.2019.09.003, 2020. a
Hyberts, S. G., Takeuchi, K., and Wagner, G.: Poisson-gap sampling and forward
maximum entropy reconstruction for enhancing the resolution and sensitivity
of protein NMR data, J. Am. Chem. Soc., 132,
2145–2147, 2010. a
Janin, J., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J., Vajda, S.,
Vakser, I., and Wodak, S. J.: CAPRI: a critical assessment of predicted
interactions, Proteins: Structure, Function, and Bioinformatics, 52, 2–9,
2003. a
Jeener, J.: Ampere International Summer School, Basko Polje Yugoslavia, 1971. a
Johnson, B. A. and Blevins, R. A.: NMR View: A computer program for the
visualization and analysis of NMR data, J. Biomol. NMR, 4,
603–614, https://doi.org/10.1007/bf00404272, 1994. a
Kazimierczuk, K. and Orekhov, V. Y.: Accelerated NMR spectroscopy by using
compressed sensing, Angewandte Chemie International Edition, 50, 5556–5559,
2011. a
Kazimierczuk, K. and Orekhov, V. Y.: A comparison of convex and non-convex
compressed sensing applied to multidimensional NMR, J. Magn.
Reson., 223, 1–10, https://doi.org/10.1016/j.jmr.2012.08.001, 2012. a
Krishnamurthy, K.: Complete Reduction to Amplitude Frequency Table
(CRAFT) – A perspective, Magn. Reson. Chem., 59, 757–791,
https://doi.org/10.1002/MRC.5135, 2021. a
Lensink, M. F., Velankar, S., and Wodak, S. J.: Modeling protein–protein and
protein–peptide complexes: CAPRI 6th edition, Proteins: Structure, Function,
and Bioinformatics, 85, 359–377, 2017. a
Maciejewski, M. W., Schuyler, A. D., Gryk, M. R., Moraru, I. I., Romero, P. R.,
Ulrich, E. L., Eghbalnia, H. R., Livny, M., Delaglio, F., and Hoch, J. C.:
NMRbox: A Resource for Biomolecular NMR Computation, Biophys. J.,
112, 1529–1534, https://doi.org/10.1016/j.bpj.2017.03.011, 2017. a, b, c
Mačiulaitis, R., Brenner, P., Hampton, S., Hildreth, M. D., Anampa, K.
P. H., Johnson, I., Kankel, C., Okraska, J., Rodriguez, D., and Šimko,
T.: Support for HTCondor high-throughput computing workflows in the REANA
reusable analysis platform, in: 2019 15th International Conference on
eScience (eScience), San Diego, CA,
24–27 September 2019, pp. 630–631, IEEE, 2019. a
Matson, G. B.: Signal integration and the signal-to-noise ratio in pulsed NMR
relaxation measurements, J. Magn. Reson., 25, 477–480,
1977. a
Mayzel, M., Kazimierczuk, K., and Orekhov, V. Y.: The causality principle in
the reconstruction of sparse NMR spectra, Chem. Commun., 50,
8947–8950, 2014. a
Mobli, M., Maciejewski, M. W., Schuyler, A. D., Stern, A. S., and Hoch, J. C.:
Sparse sampling methods in multidimensional NMR, Phys. Chem. Chem.
Phys., 14, 10835–10843, 2012. a
Monajemi, H., Donoho, D. L., Hoch, J. C., and Schuyler, A. D.: Incoherence of
Partial-Component Sampling in multidimensional NMR, arXiv [preprint], arXiv:1702.01830, 7 February 2017. a
Moskau, D.: Application of real time digital filters in NMR spectroscopy,
Concept Magn. Res., 15, 164–176,
https://doi.org/10.1002/cmr.10031, 2002. a, b
Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K.: A large‐scale
experiment to assess protein structure prediction methods, Proteins:
Structure, Function, and Genetics, 23, ii–iv,
https://doi.org/10.1002/prot.340230303, 1995. a
Mulder, F. A. A., Otten, R., and Scheek, R. M.: Origin and removal of
mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single
quantum correlation spectra, J. Biomol. NMR, 51, 199–207,
https://doi.org/10.1007/s10858-011-9554-9, 2011. a
Naylor, D. A. and Tahic, M. K.: Apodizing functions for Fourier transform
spectroscopy, J. Opt. Soc. Am. A, 24, 3644–3648,
https://doi.org/10.1364/josaa.24.003644, 2007. a
Nyquist, H.: Certain topics in telegraph transmission theory, Transactions of
the American Institute of Electrical Engineers, 47, 617–644, 1928. a
Orekhov, V. Y. and Jaravine, V. A.: Analysis of non-uniformly sampled spectra
with multi-dimensional decomposition, Prog. Nucl. Mag. Res.
Sp., 59, 271–292, 2011. a
Orekhov, V. Y., Ibraghimov, I. V., and Billeter, M.: MUNIN: a new approach to
multi-dimensional NMR spectra interpretation, J. Biomol. NMR,
20, 49–60, 2001. a
Ousterhout, J. K.: TCL and the Tk Toolkit, 1st edn., Addison-Wesley Professional, Boston, USA, 480 pp., ISBN 978-0-2016-3337-5, 1994. a
Pedersen, C. P., Prestel, A., and Teilum, K.: Software for reconstruction of
nonuniformly sampled NMR data, Magn. Reson. Chem., 59, 315–323,
https://doi.org/10.1002/mrc.5060, 2020. a
Pervushin, K., Riek, R., Wider, G., and Wüthrich, K.: Attenuated T2
relaxation by mutual cancellation of dipole–dipole coupling and chemical
shift anisotropy indicates an avenue to NMR structures of very large
biological macromolecules in solution, P. Natl.
Acad. Sci. USA, 94, 12366–12371,
https://doi.org/10.1073/pnas.94.23.12366, 1997. a
Qu, X., Cao, X., Guo, D., and Chen, Z.: Compressed sensing for sparse magnetic
resonance spectroscopy, in: International Society for Magnetic Resonance in Medicine, vol. 10, p. 3371, 2010. a
Roginkin, M. S., Ndukwe, I. E., Craft, D. L., Williamson, R. T., Reibarkh, M.,
Martin, G. E., and Rovnyak, D.: Developing nonuniform sampling strategies to
improve sensitivity and resolution in 1, 1-ADEQUATE experiments, Magn.
Reson. Chem., 58, 625–640, 2020. a
Rovnyak, D.: The past, present, and future of 1.26T2, Concept. Magn.
Reson. A, 47, e21473, https://doi.org/10.1002/cmr.a.21473, 2019. a
Schmieder, P., Stern, A. S., Wagner, G., and Hoch, J. C.: Application of
nonlinear sampling schemes to COSY-type spectra, J. Biomol. NMR,
3, 569–576, 1993. a
Schuyler, A. D., Maciejewski, M. W., Stern, A. S., and Hoch, J. C.: Formalism
for hypercomplex multidimensional NMR employing partial-component
subsampling, J. Magn. Reson., 227, 20–24, 2013. a
Stern, A. S., Li, K.-B., and Hoch, J. C.: Modern spectrum analysis in
multidimensional NMR spectroscopy: comparison of linear-prediction
extrapolation and maximum-entropy reconstruction, J. Am.
Chem. Soc., 124, 1982–1993, 2002. a
Williamson, M. P.: Using chemical shift perturbation to characterise ligand
binding, Prog. Nucl. Mag. Res. Sp., 73, 1–16,
https://doi.org/10.1016/j.pnmrs.2013.02.001, 2013. a
Ying, J., Chill, J. H., Louis, J. M., and Bax, A.: Mixed-time parallel
evolution in multiple quantum NMR experiments: sensitivity and resolution
enhancement in heteronuclear NMR, J. Biomol. NMR, 37,
195–204, https://doi.org/10.1007/s10858-006-9120-z, 2007. a
Yoon, J. W., Godsill, S., Kupče, E., and Freeman, R.: Deterministic and
statistical methods for reconstructing multidimensional NMR spectra, Magn.
Reson. Chem., 44, 197–209, 2006. a
Zambrello, M. A., Maciejewski, M. W., Schuyler, A. D., Weatherby, G., and Hoch,
J. C.: Robust and transferable quantification of NMR spectral quality using
IROC analysis, J. Magn. Reson., 285, 37–46, 2017. a
Short summary
We present the ongoing work of a large, community initiative to establish standards for the processing of nonuniformly sampled NMR experiments. The NUScon software, contest, and archive of spectral evaluation data provide a comprehensive platform for addressing the most challenging questions related to NUS experiments. We will run annual contests and generate a database of results, which will empower us in guiding the NUS community towards a set of best practices.
We present the ongoing work of a large, community initiative to establish standards for the...