Articles | Volume 3, issue 2
https://doi.org/10.5194/mr-3-203-2022
https://doi.org/10.5194/mr-3-203-2022
Research article
 | 
06 Oct 2022
Research article |  | 06 Oct 2022

Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles

Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst

Related authors

Low-power WALTZ decoupling under magic-angle spinning NMR
Luzian Thomas and Matthias Ernst
Magn. Reson., 5, 153–166, https://doi.org/10.5194/mr-5-153-2024,https://doi.org/10.5194/mr-5-153-2024, 2024
Short summary
Evaluating the motional timescales contributing to averaged anisotropic interactions in MAS solid-state NMR
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024,https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Modelling and correcting the impact of RF pulses for continuous monitoring of hyperpolarized NMR
Gevin von Witte, Matthias Ernst, and Sebastian Kozerke
Magn. Reson., 4, 175–186, https://doi.org/10.5194/mr-4-175-2023,https://doi.org/10.5194/mr-4-175-2023, 2023
Short summary
Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference
Václav Římal, Morgane Callon, Alexander A. Malär, Riccardo Cadalbert, Anahit Torosyan, Thomas Wiegand, Matthias Ernst, Anja Böckmann, and Beat H. Meier
Magn. Reson., 3, 15–26, https://doi.org/10.5194/mr-3-15-2022,https://doi.org/10.5194/mr-3-15-2022, 2022
Short summary
Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021,https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary

Related subject area

Field: Hyperpolarization | Topic: Instrumentation
Light-coupled cryogenic probes to detect low-micromolar samples and allow for an automated NMR platform
Wolf Wüster, Pit Gebbers, Alois Renn, Matthias Bütikofer, Sophie Rüdiger, Roland P. Riek, and Felix Torres
Magn. Reson., 5, 61–67, https://doi.org/10.5194/mr-5-61-2024,https://doi.org/10.5194/mr-5-61-2024, 2024
Short summary
A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution
Karel Kouřil, Michel Gramberg, Michael Jurkutat, Hana Kouřilová, and Benno Meier
Magn. Reson., 2, 815–825, https://doi.org/10.5194/mr-2-815-2021,https://doi.org/10.5194/mr-2-815-2021, 2021
Short summary
A novel sample handling system for dissolution dynamic nuclear polarization experiments
Thomas Kress, Kateryna Che, Ludovica M. Epasto, Fanny Kozak, Mattia Negroni, Gregory L. Olsen, Albina Selimovic, and Dennis Kurzbach
Magn. Reson., 2, 387–394, https://doi.org/10.5194/mr-2-387-2021,https://doi.org/10.5194/mr-2-387-2021, 2021
Short summary
Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry–Pérot type microwave resonator
Alexey Fedotov, Ilya Kurakin, Sebastian Fischer, Thomas Vogl, Thomas F. Prisner, and Vasyl Denysenkov
Magn. Reson., 1, 275–284, https://doi.org/10.5194/mr-1-275-2020,https://doi.org/10.5194/mr-1-275-2020, 2020
Short summary

Cited articles

Albannay, M. M., Vinther, J. M. O., Capozzi, A., Zhurbenko, V., and Ardenkjaer-Larsen, J. H.: Optimized microwave delivery in dDNP, J. Magn. Reson., 305, 58–65, https://doi.org/10.1016/j.jmr.2019.06.004, 2019. 
Atkins, T. M., Cassidy, M. C., Lee, M., Ganguly, S., Marcus, C. M., and Kauzlarich, S. M.: Synthesis of Long T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging, ACS Nano, 7, 1609–1617, https://doi.org/10.1021/nn305462y, 2013. 
Blank, M., Felch, K., Michaelis, V., Griffin, R., Corzilius, B., and Vega, S.: Millimeter-wave sources for DNP-NMR, in: Handbook of High Field Dynamic Nuclear Polarization, Wiley & Sons, 155–166, ISBN: 978-1-119-44164-9, 2020. 
Cassidy, M. C., Chan, H. R., Ross, B. D., Bhattacharya, P. K., and Marcus, C. M.: In vivo magnetic resonance imaging of hyperpolarized silicon particles, Nat. Nanotechnol., 8, 363–368, https://doi.org/10.1038/nnano.2013.65, 2013a. 
Download
Short summary
Dynamic nuclear polarization requires a waveguide that connects the cold (1–10 K) sample space to the outside. To reduce the heating of the sample, a waveguide is produced from steel which has low thermal conductivity but attenuates the microwaves. Therefore, the inside of the waveguide should be plated with silver to reduce electrical losses. We show a new simple way to electroplate such waveguides with a thin silver layer and show that this improves the experimental performance.