Articles | Volume 5, issue 2
https://doi.org/10.5194/mr-5-131-2024
https://doi.org/10.5194/mr-5-131-2024
Research article
 | 
12 Sep 2024
Research article |  | 12 Sep 2024

PRESERVE: adding variable flip-angle excitation to transverse relaxation-optimized NMR spectroscopy

Bernhard Brutscher

Related authors

ssNMRlib: a comprehensive library and tool box for acquisition of solid-state nuclear magnetic resonance experiments on Bruker spectrometers
Alicia Vallet, Adrien Favier, Bernhard Brutscher, and Paul Schanda
Magn. Reson., 1, 331–345, https://doi.org/10.5194/mr-1-331-2020,https://doi.org/10.5194/mr-1-331-2020, 2020
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Pulse-sequence development
A modular library for fast prototyping of solution-state nuclear magnetic resonance experiments
Michał Górka and Wiktor Koźmiński
Magn. Reson., 5, 51–59, https://doi.org/10.5194/mr-5-51-2024,https://doi.org/10.5194/mr-5-51-2024, 2024
Short summary
Various facets of intermolecular transfer of phase coherence by nuclear dipolar fields
Philippe Pelupessy
Magn. Reson., 4, 271–283, https://doi.org/10.5194/mr-4-271-2023,https://doi.org/10.5194/mr-4-271-2023, 2023
Short summary
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022,https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Mechanisms of coherent re-arrangement for long-lived spin order
Florin Teleanu and Paul R. Vasos
Magn. Reson., 2, 741–749, https://doi.org/10.5194/mr-2-741-2021,https://doi.org/10.5194/mr-2-741-2021, 2021
Short summary
Rapid measurement of heteronuclear transverse relaxation rates using non-uniformly sampled R1ρ accordion experiments
Sven Wernersson, Göran Carlström, Andreas Jakobsson, and Mikael Akke
Magn. Reson., 2, 571–587, https://doi.org/10.5194/mr-2-571-2021,https://doi.org/10.5194/mr-2-571-2021, 2021
Short summary

Cited articles

Brutscher, B.: Principles and applications of cross-correlated relaxation in biomolecules, Concepts Magn. Reson., 12, 207–229, https://doi.org/10.1002/1099-0534(2000)12:4<207::AID-CMR3>3.0.CO;2-C, 2000. 
Brutscher, B.: PRESERVE-TROSY and SOFAST-TROSY experiments, In Magnetic Resonance, Zenodo [data set], https://doi.org/10.5281/zenodo.11447367, 2024. 
Brutscher, B. and Solyom, Z.: Polarization-enhanced Fast-pulsing Techniques, in: Fast NMR data acquisition, The Royal Chemical Society, UK, 1–48, https://doi.org/10.1039/9781782628361-00001, 2017. 
Brutscher, B., Boisbouvier, J., Pardi, A., Marion, D., and Simorre, J.-P.: Improved Sensitivity and Resolution in 1H-13C NMR Experiments of RNA, J. Am. Chem. Soc., 120, 11845–11851, https://doi.org/10.1021/ja982853l, 1998. 
Ernst, R. R. and Anderson, W.: Application of Fourier Transform Spectroscopy to Magnetic Resonance, Rev. Sci. Instrum., 37, 93, https://doi.org/10.1063/1.1719961, 1966. 
Download
Short summary
We introduce the PRESERVE pulse sequence element, allowing variable flip-angle adjustment in 2D 1H–15N and 1H–13C transverse-relaxation-optimized-spectroscopy (TROSY)-type correlation experiments. PRESERVE-TROSY exploits a remarkable array of up to nine orthogonal polarization-coherence transfer pathways, showcasing the remarkable potential of spin manipulations achievable via the design and optimization of nuclear magnetic resonance (NMR) pulse sequences.