Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-199-2025
https://doi.org/10.5194/mr-6-199-2025
Research article
 | 
29 Jul 2025
Research article |  | 29 Jul 2025

Automated manufacturing process for sustainable prototyping of nuclear magnetic resonance transceivers

Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer

Related authors

Spin prepolarization with a compact superconducting magnet
Paul Jelden, Magnus Dam, Jens Hänisch, Martin Börner, Sören Lehmkuhl, Bernhard Holtzapfel, Tabea Arndt, and Jan Gerrit Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-10,https://doi.org/10.5194/mr-2025-10, 2025
Preprint under review for MR
Short summary
Coherence locking in a parallel nuclear magnetic resonance probe defends against gradient field spillover
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025,https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
A perspective for magic angle spinning above 250 kHz – OptiMAS
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24,https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021,https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021,https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary

Cited articles

Adams, J. J., Duoss, E. B., Malkowski, T. F., Motala, M. J., Ahn, B. Y., Nuzzo, R. G., Bernhard, J. T., and Lewis, J. A.: Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces, Adv. Mater., 23, 1335–1340, https://doi.org/10.1002/adma.201003734, 2011. a
Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R. G., Rogers, J. A., and Lewis, J. A.: Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes, Science, 323, 1590–1593, https://doi.org/10.1126/science.1168375, 2009. a
Ashif, N. R., Gengenbach, U., and Sieber, I.: Process Development for Digital Fabrication of Radio Frequency Transmission Lines with Off-the-Shelf Equipment, in: 2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 1–5, IEEE, ISBN 979-8-3503-7826-9, https://doi.org/10.1109/DTIP62575.2024.10613213, 2024. a
Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., Elverfeldt, D. V., Hennig, J., Korvink, J. G., and Wallrabe, U.: On-chip three dimensional microcoils for MRI at the microscale, Lab Chip, 10, 1387–1390, https://doi.org/10.1039/C000840K, 2010a. a
Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., Elverfeldt, D. V., Hennig, J., Korvink, J. G., and Wallrabe, U.: On-chip three dimensional microcoils for MRI at the microscale, Lab on a chip, 10, 1387–1390, https://doi.org/10.1039/c000840k, 2010b. a
Download
Short summary
We present a technology that allows for the direct writing of conductive tracks on cylindrical substrates as receiver coils for magnetic resonance (MR) experiments. The structures are written with high precision, which has two benefits. First, the real structures behave very similarly to the simulated designs, reducing the component variation; second, this allows for the writing of coils apart from the fairly straightforward solenoidal coils, thereby making complex designs available for MR microcoils.
Share