Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-199-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-199-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated manufacturing process for sustainable prototyping of nuclear magnetic resonance transceivers
Sagar Wadhwa
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Voxalytic GmbH, Rosengarten 3, 76228 Karlsruhe, Germany
Nan Wang
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Klaus-Martin Reichert
Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Manuel Butzer
Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Omar Nassar
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Mazin Jouda
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Jan G. Korvink
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Ulrich Gengenbach
Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Martin Ungerer
Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Related authors
No articles found.
Paul Jelden, Magnus Dam, Jens Hänisch, Martin Börner, Sören Lehmkuhl, Bernhard Holtzapfel, Tabea Arndt, and Jan Gerrit Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-10, https://doi.org/10.5194/mr-2025-10, 2025
Preprint under review for MR
Short summary
Short summary
High critical field superconductors are less sensitive to magnet quenching, providing even higher fields. They can be cooled using cryogens like Helium, but simply using an oscillating pressure field. Using solar or wind energy, the cheap cooling promises magnetic resonance at high field, low operating cost, and renewable energy. Such magnets, made compact, can be used to prepolarise chemical samples, to be analysed in benchtop NMR systems, with better nuclear magnetic resonance spectra.
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025, https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24, https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
Short summary
The magic angle spinning (MAS) technique of solid state NMR requires samples to be rapidly rotated within a magnetic field. The rotation rate speed record is 150 kHz, or 9 million RPM, and hence MAS turbines hold the world rotation speed record for extended objects. The containers holding the samples are made of the strongest materials known, to be able to withstand the excessive centrifugal forces. To overcome the speed limit, this paper delineates a way to do so using an optical tweezers setup
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021, https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
Short summary
We use the theory of magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. This leads to self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic modelling of complex material behaviours.
Sagar Wadhwa, Mazin Jouda, Yongbo Deng, Omar Nassar, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 225–236, https://doi.org/10.5194/mr-1-225-2020, https://doi.org/10.5194/mr-1-225-2020, 2020
Short summary
Short summary
Magnetic resonance detectors require a high degree of precision to be useful. Their design must e.g. carefully weigh field strength and field homogeneity to find the best compromise. Here we show that inverse computational design is a viable method to find such a
trade-off. Apart from the electromagnetic field solution, the simulation program also determines the boundary between insulating and conducting material and moves the material boundaries around until the compromise is best satisfied.
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020, https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary
Short summary
We have assembled a few off-the-shelf electronic chips and a popular Arduino Uno microcomputer board in an automatic system that performs so-called tuning and matching of an arbitrary NMR probe head at very low cost. This removes the tedium of doing the job by hand, the bane of many NMR analysts. It also brings accuracy and repeatability into the process, which is so necessary for high throughput analysis or when working with low-field permanent magnesystems with excessive magnetic field drift.
Cited articles
Adams, J. J., Duoss, E. B., Malkowski, T. F., Motala, M. J., Ahn, B. Y., Nuzzo, R. G., Bernhard, J. T., and Lewis, J. A.: Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces, Adv. Mater., 23, 1335–1340, https://doi.org/10.1002/adma.201003734, 2011. a
Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R. G., Rogers, J. A., and Lewis, J. A.: Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes, Science, 323, 1590–1593, https://doi.org/10.1126/science.1168375, 2009. a
Ashif, N. R., Gengenbach, U., and Sieber, I.: Process Development for Digital Fabrication of Radio Frequency Transmission Lines with Off-the-Shelf Equipment, in: 2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 1–5, IEEE, ISBN 979-8-3503-7826-9, https://doi.org/10.1109/DTIP62575.2024.10613213, 2024. a
Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., Elverfeldt, D. V., Hennig, J., Korvink, J. G., and Wallrabe, U.: On-chip three dimensional microcoils for MRI at the microscale, Lab Chip, 10, 1387–1390, https://doi.org/10.1039/C000840K, 2010a. a
Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., Elverfeldt, D. V., Hennig, J., Korvink, J. G., and Wallrabe, U.: On-chip three dimensional microcoils for MRI at the microscale, Lab on a chip, 10, 1387–1390, https://doi.org/10.1039/c000840k, 2010b. a
Can, T. T. T., Nguyen, T. C., and Choi, W.-S.: Patterning of High-Viscosity Silver Paste by an Electrohydrodynamic-Jet Printer for Use in TFT Applications, Sci. Rep., 9, 1–8, https://doi.org/10.1038/s41598-019-45504-5, 2019. a
Chia Gómez, L. P., Bollgruen, P., Egunov, A. I., Mager, D., Malloggi, F., Korvink, J. G., and Luchnikov, V. A.: Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface, Lab Chip, 13, 3827–3831, https://doi.org/10.1039/C3LC50542A, 2013. a
COMSOL: RF Module User's Guide, COMSOL Multiphysics v. 5.4, COMSOL AB, https://doc.comsol.com/5.4/doc/com.comsol.help.rf/RFModuleUsersGuide.pdf, last access: 9 July 2025. a
Finch, G., Yilmaz, A., and Utz, M.: An optimised detector for in-situ high-resolution NMR in microfluidic devices, J. Magn. Reson., 262, 73–80, https://doi.org/10.1016/j.jmr.2015.11.011, 2016. a, b
Fischer, A. C., Korvink, J. G., Roxhed, N., Stemme, G., Wallrabe, U., and Niklaus, F.: Unconventional applications of wire bonding create opportunities for microsystem integration, J. Micromech. Microeng., 23, 083001, https://doi.org/10.1088/0960-1317/23/8/083001, 2013. a
Haase, A., Odoj, F., Kienlin, M. V., Warnking, J., Fidler, F., Weisser, A., Nittka, M., Rommel, E., Lanz, T., Kalusche, B., and Griswold, M.: NMR Probeheads for In Vivo Applications, Concepts in Magnetic Resonance, 388–388, https://doi.org/10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L, 2000. a
Hoult, D. and Richards, R.: The signal-to-noise ratio of the nuclear magnetic resonance experiment, J. Magn. Reson., 24, 71–85, https://doi.org/10.1016/j.jmr.2011.09.018, 1976. a, b
Jang, Y., Kim, J., and Byun, D.: Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing, J. Phys. D, 46, 1–5, https://doi.org/10.1088/0022-3727/46/15/155103, 2013. a
Jouda, M., Torres Delgado, S. M., Jouzdani, M. A., Mager, D., and Korvink, J. G.: ArduiTaM: accurate and inexpensive NMR auto tune and match system, Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020, 2020. a
Kamberger, R., Moazenzadeh, A., Korvink, J. G., and Gruschke, O. G.: Hollow microcoils made possible with external support structures manufactured with a two-solvent process, J. Micromech. Microeng., 26, 065002, https://doi.org/10.1088/0960-1317/26/6/065002, 2016. a, b
Kratt, K., Badilita, V., Burger, T., Korvink, J. G., and Wallrabe, U.: A fully MEMS-compatible process for 3D high aspect ratio micro coils obtained with an automatic wire bonder, J. Micromech. Microeng., 20, 015021, https://doi.org/10.1088/0960-1317/20/1/015021, 2009. a
Kwon, K.-S., Rahman, M. K., Phung, T. H., Hoath, S., Jeong, S., and Kim, J. S.: Review of digital printing technologies for electronic materials, Flexible and Printed Electronics, 5, 1–53, https://doi.org/10.1088/2058-8585/abc8ca, 2020. a, b, c
Lide, D. R. (Ed.): Electrical Resistivity of Pure Metals, in: CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL, ISBN 13 978-0849305979, 2005. a
Mager, D.: “Rohdaten zur Publikation `Automated manufacturing process for sustainable prototyping of nuclear magnetic resonance transceivers' (10.5194/mr-2024-22)”, Karlsruhe Institute of Technology [data set], https://doi.org/10.35097/8eeh3psqj9a0vwx5, 2025. a
Mager, D., Badilita, V., Loeffelman, U., Smith, P. J., and Korvink, J. G.: Micro-MR coil construction by combining metal-on-glass inkjetting and MEMS techniques, in: Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, 18–24 April 2009, 2009. a
Moxley-Paquette, V., Pellizzari, J., Lane, D., Steiner, K., Costa, P. M., Wolff, W. W., Lysak, D. H., Ghosh Biswas, R., Downey, K., Ronda, K., Soong, R., Zverev, D., De Castro, P., Frei, T., Al Adwan-Stojilkovic, D., Graf, S., Gloor, S., Schmidig, D., Kuemmerle, R., Kuehn, T., Busse, F., Haberer, N., Domaszewicz, J., Scatena, R., Lacerda, A., Nashman, B., Anders, J., Utz, M., and Simpson, A. J.: Exploration of Materials for Three-Dimensional NMR Microcoil Production via CNC Micromilling and Laser Etching, Anal. Chem., 96, 13588–13597, https://doi.org/10.1021/acs.analchem.4c02373, 2024. a, b
Nassar, O., Jouda, M., Rapp, M., Mager, D., Korvink, J. G., and MacKinnon, N.: Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy, Microsystems & Nanoengineering, 7, 1–17, https://doi.org/10.1038/s41378-021-00253-2, 2021. a
Olson, D. L., Peck, T. L., Webb, A. G., Magin, R. L., and Sweedler, J. V.: High-Resolution Microcoil 1H-NMR for Mass-Limited, Nanoliter-Volume Samples, Science, 270, 1967–1970, https://doi.org/10.1126/SCIENCE.270.5244.1967, 1995. a, b
Paulsen, J. A., Renn, M., Christenson, K., and Plourde, R.: Printing conformal electronics on 3D structures with Aerosol Jet technology, in: 2012 Future of Instrumentation International Workshop (FIIW 2012), 1–4, IEEE, Piscataway, NJ, ISBN 978-1-4673-2482-3, https://doi.org/10.1109/FIIW.2012.6378343, 2012. a
Rogers, J. A., Jackman, R. J., Whitesides, G. M., Olson, D. L., and Sweedler, J. V.: Using Microcontact Printing to Fabricate Microcoils on Capillaries for High Resolution Proton Nuclear Magnetic Resonance on Nanoliter Volumes, Appl. Phys. Lett., 70, 2464–2466, 570, 1997. a
Spengler, N., Höfflin, J., Moazenzadeh, A., Mager, D., MacKinnon, N., Badilita, V., Wallrabe, U., and Korvink, J. G.: Heteronuclear Micro-Helmholtz Coil Facilitates micrometer-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips, PloS one, 11, e0146384, https://doi.org/10.1371/journal.pone.0146384, 2016. a, b
Ungerer, M.: Neue Methodik zur Optimierung von Druckverfahren für die Herstellung funktionaler Mikrostrukturen und hybrider elektronischer Schaltungen, PhD Thesis, Karlsruher Institut für Technologie, Karlsruhe, :KITopen-ID: 1000128650, 2020. a
Ungerer, M., Spomer, W., Wacker, I., Schröder, R., and Gengenbach, U.: A Method for the Analysis of the Nano- and Micromorphology of Printed Structures on Flexible Polymer Films: Analysis of the cross section of inkjet-printed conductive traces on PET film substrates based on ultramicrotome sectioning and SEM imaging, International Journal on Advances in Intelligent Systems, 10, 383–392, 2017. a
Wang, N., Egunov, A., Spengler, N., Nestle, N., Luchnikov, V., Mager, D., and Korvink, J. G.: Inkjet Printed Micro Saddle Coil for MR Imaging, in: Proc. 32nd International Conference on Digital Printing Technologies (NIP), edited by: Society for Imaging Science and Technology, vol. 2016, 339–342, Springfield, VA, USA, ISBN 978-1-5108-4052-2, 2017. a, b
Wang, N., Meissner, M. V., MacKinnon, N., Luchnikov, V., Mager, D., and Korvink, J. G.: Fast prototyping of microtubes with embedded sensing elements made possible with an inkjet printing and rolling process, J. Micromech. Microeng., 28, 1–10, https://doi.org/10.1088/1361-6439/aa7a61, 2018. a
Short summary
We present a technology that allows for the direct writing of conductive tracks on cylindrical substrates as receiver coils for magnetic resonance (MR) experiments. The structures are written with high precision, which has two benefits. First, the real structures behave very similarly to the simulated designs, reducing the component variation; second, this allows for the writing of coils apart from the fairly straightforward solenoidal coils, thereby making complex designs available for MR microcoils.
We present a technology that allows for the direct writing of conductive tracks on cylindrical...