Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-211-2025
https://doi.org/10.5194/mr-6-211-2025
Research article
 | 
12 Aug 2025
Research article |  | 12 Aug 2025

Can label or protein deuteration extend the phase relaxation time of Gd(III) spin labels?

Elena Edinach, Xing Zhang, Chao-Yu Cui, Yin Yang, George Mitrikas, Alexey Bogdanov, Xun-Cheng Su, and Daniella Goldfarb

Related authors

Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022,https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
The decay of the refocused Hahn echo in double electron–electron resonance (DEER) experiments
Thorsten Bahrenberg, Samuel M. Jahn, Akiva Feintuch, Stefan Stoll, and Daniella Goldfarb
Magn. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021,https://doi.org/10.5194/mr-2-161-2021, 2021
Short summary
Study of electron spectral diffusion process under DNP conditions by ELDOR spectroscopy focusing on the 14N solid effect
Marie Ramirez Cohen, Akiva Feintuch, Daniella Goldfarb, and Shimon Vega
Magn. Reson., 1, 45–57, https://doi.org/10.5194/mr-1-45-2020,https://doi.org/10.5194/mr-1-45-2020, 2020
Short summary

Cited articles

Canarie, E. R., Jahn, S. M., and Stoll, S.: Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals, J. Phys. Chem. Lett., 11, 3396–3400, https://doi.org/10.1021/acs.jpclett.0c00768, 2020. 
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., and Goldfarb, D.: Gd(III)–Gd(III) EPR distance measurements–the range of accessible distances and the impact of zero field splitting, Phys. Chem. Chem. Phys., 17, 18464–18476, https://doi.org/10.1039/c5cp02602d, 2015. 
Eaton, S. S. and Eaton, G. R.: Relaxation Times of Organic Radicals and Transition Metal Ions, in: Distance Measurements in Biological Systems by EPR, edited by: Berliner, L. J., Eaton, G. R., and Eaton, S. S., Springer US, Boston, MA, 29–154, https://doi.org/10.1007/0-306-47109-4_2, 2000. 
Edinach, E., Zhang, X., Cui, C.-Y., Mitrikas, G., Yang, Y., Bogdanov, A., Su, X.-C., and Goldfarb, D.: Data for manuscript “Can label or protein deuteration extend the phase relaxation time of Gd(III) spin labels?”, Zenodo [data set and code], https://doi.org/10.5281/zenodo.15112855, 2025. 
Epel, B., Arieli, D., Baute, D., and Goldfarb, D.: Improving W-band pulsed ENDOR sensitivity-random acquisition and pulsed special TRIPLE, J. Magn. Reson., 164, 78–83, https://doi.org/10.1016/s1090-7807(03)00191-5, 2003. 
Download
Short summary
Protein structure and motion are key to its function. Using electron paramagnetic resonance (EPR) methods, it is possible to measure distances between magnetic markers like gadolinium ions grafted on proteins. Such measurements rely on the gadolinium phase memory time, determining how long the signal lasts. We studied how nearby atoms and environmental noise affect signal lifetimes using advanced EPR techniques. Our findings show how lifetimes can be extended to design better protein analysis.
Share