Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can label or protein deuteration extend the phase relaxation time of Gd(III) spin labels?
Elena Edinach
Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
Xing Zhang
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
Chao-Yu Cui
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
Yin Yang
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
George Mitrikas
Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens 15310, Greece
Alexey Bogdanov
Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
Xun-Cheng Su
CORRESPONDING AUTHOR
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
Daniella Goldfarb
CORRESPONDING AUTHOR
Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
Related authors
No articles found.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Thorsten Bahrenberg, Samuel M. Jahn, Akiva Feintuch, Stefan Stoll, and Daniella Goldfarb
Magn. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021, https://doi.org/10.5194/mr-2-161-2021, 2021
Short summary
Short summary
Double electron–electron resonance (DEER) provides information on the structure of proteins by attaching two spin labels to the protein at a well-defined location and measuring the distance between them. The sensitivity of the method in terms of the amount of the protein that is needed for the experiment depends strongly on the relaxation properties of the spin label and the composition of the solvent. We show how to set up the experiment for best sensitivity when the solvent is water (H2O).
Marie Ramirez Cohen, Akiva Feintuch, Daniella Goldfarb, and Shimon Vega
Magn. Reson., 1, 45–57, https://doi.org/10.5194/mr-1-45-2020, https://doi.org/10.5194/mr-1-45-2020, 2020
Short summary
Short summary
DNP is a method used to enhance NMR signals by transferring polarization from radicals to nuclear spins using microwave irradiation. The EPR spectrum of the radical during the irradiation is determined by a process called spectral diffusion and affects the DNP efficiency. This process can be measured by electron–electron double resonance. We explored experimentally and theoretically the contribution of the hyperfine coupling of the 14N nuclei in the nitroxide radical to the spectral diffusion.
Cited articles
Canarie, E. R., Jahn, S. M., and Stoll, S.: Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals, J. Phys. Chem. Lett., 11, 3396–3400, https://doi.org/10.1021/acs.jpclett.0c00768, 2020.
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., and Goldfarb, D.: Gd(III)–Gd(III) EPR distance measurements–the range of accessible distances and the impact of zero field splitting, Phys. Chem. Chem. Phys., 17, 18464–18476, https://doi.org/10.1039/c5cp02602d, 2015.
Eaton, S. S. and Eaton, G. R.: Relaxation Times of Organic Radicals and Transition Metal Ions, in: Distance Measurements in Biological Systems by EPR, edited by: Berliner, L. J., Eaton, G. R., and Eaton, S. S., Springer US, Boston, MA, 29–154, https://doi.org/10.1007/0-306-47109-4_2, 2000.
Edinach, E., Zhang, X., Cui, C.-Y., Mitrikas, G., Yang, Y., Bogdanov, A., Su, X.-C., and Goldfarb, D.: Data for manuscript “Can label or protein deuteration extend the phase relaxation time of Gd(III) spin labels?”, Zenodo [data set and code], https://doi.org/10.5281/zenodo.15112855, 2025.
Epel, B., Arieli, D., Baute, D., and Goldfarb, D.: Improving W-band pulsed ENDOR sensitivity-random acquisition and pulsed special TRIPLE, J. Magn. Reson., 164, 78–83, https://doi.org/10.1016/s1090-7807(03)00191-5, 2003.
Feintuch, A., Shimon, D., Hovav, Y., Banerjee, D., Kaminker, I., Lipkin, Y., Zibzener, K., Epel, B., Vega, S., and Goldfarb, D.: A Dynamic Nuclear Polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities, J. Magn. Reson., 209, 136–141, https://doi.org/10.1016/j.jmr.2010.12.010, 2011.
Garbuio, L., Zimmermann, K., Häussinger, D., and Yulikov, M.: Gd(III) complexes for electron–electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting, J. Magn. Reson., 259, 163–173, https://doi.org/10.1016/j.jmr.2015.08.009, 2015.
Giannoulis, A., Ben-Ishay, Y., and Goldfarb, D.: Characteristics of Gd(III) spin labels for the study of protein conformations, Meth. Enzymol., 651, 235–290, https://doi.org/10.1016/bs.mie.2021.01.040, 2021.
Goldfarb, D.: Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy, Phys. Chem. Chem. Phys., 16, 9685–9699, https://doi.org/10.1039/C3CP53822B, 2014.
Gromov, I., Krymov, V., Manikandan, P., Arieli, D., and Goldfarb, D.: A W-band pulsed ENDOR spectrometer: Setup and application to transition metal centers, J. Magn. Reson., 139, 8–17, https://doi.org/10.1006/jmre.1999.1762, 1999.
Hansen, S. H., Buch, C. D., Petersen, J. B., Rix, M., Ubach I Cervera, M., Strandfelt, A., Winpenny, R. E. P., McInnes, E. J. L., and Piligkos, S.: Probing decoherence in molecular 4f qubits, Chem. Sci., 15, 20328–20337, https://doi.org/10.1039/D4SC05304D, 2024.
Jeschke, G.: Nuclear pair electron spin echo envelope modulation, Journal of Magnetic Resonance Open, 14–15, 100094, https://doi.org/10.1016/j.jmro.2023.100094, 2023.
Kurshev, V. V. and Raitsimring, A. M.: Carr-Purcell train in the conditions of partial excitation of magnetic resonance spectrum, J. Magn. Reson., 88, 126–129, https://doi.org/10.1016/0022-2364(90)90113-N, 1990.
Li, J. and Byrd, R. A.: A simple protocol for the production of highly deuterated proteins for biophysical studies, J. Biol. Chem., 298, 102253, https://doi.org/10.1016/j.jbc.2022.102253, 2022.
Mentink-Vigier, F., Collauto, A., Feintuch, A., Kaminker, I., Le, V. T., and Goldfarb, D.: Increasing sensitivity of pulse EPR experiments using echo train detection schemes, J. Magn. Reson., 236, 117–125, https://doi.org/10.1016/j.jmr.2013.08.012, 2013.
Mitrikas, G.: Long Electron Spin Coherence Times of Atomic Hydrogen Trapped in Silsesquioxane Cages, J. Phys. Chem. Lett., 14, 9590–9595, https://doi.org/10.1021/acs.jpclett.3c02626, 2023.
Mocanu, E. M., Ben-Ishay, Y., Topping, L., Fisher, S. R., Hunter, R. I., Su, X.-C., Butler, S. J., Smith, G. M., Goldfarb, D., and Lovett, J. E.: Robustness and Sensitivity of Gd(III)–Gd(III) Double Electron–Electron Resonance (DEER) Measurements: Comparative Study of High-Frequency EPR Spectrometer Designs and Spin Label Variants, Appl. Magn. Reson., 56, 591–611, https://doi.org/10.1007/s00723-024-01741-0, 2025.
Montgomery, J. R. D., Lancefield, C. S., Miles-Barrett, D. M., Ackermann, K., Bode, B. E., Westwood, N. J., and Lebl, T.: Fractionation and DOSY NMR as Analytical Tools: From Model Polymers to a Technical Lignin, ACS Omega, 2, 8466–8474, https://doi.org/10.1021/acsomega.7b01287, 2017.
Ossadnik, D., Kuzin, S., Qi, M., Yulikov, M., and Godt, A.: A Gd(III)-Based Spin Label at the Limits for Linewidth Reduction through Zero-Field Splitting Optimization, Inorg. Chem., 62, 408–432, https://doi.org/10.1021/acs.inorgchem.2c03531, 2023.
Ossadnik, D., Qi, M., Voss, J., Keller, K., Yulikov, M., and Godt, A.: A Set of Three GdIII Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths, J. Org. Chem., 90, 1847–1876, https://doi.org/10.1021/acs.joc.4c02441, 2025.
Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W.: Dead-Time Free Measurement of Dipole–Dipole Interactions between Electron Spins, J. Magn. Reson., 142, 331–340, https://doi.org/10.1006/jmre.1999.1944, 2000.
Raitsimring, A., Astashkin, A. V., Enemark, J. H., Kaminker, I., Goldfarb, D., Walter, E. D., Song, Y., and Meade, T. J.: Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature, Appl. Magn. Reson., 44, 649–670, https://doi.org/10.1007/s00723-012-0434-6, 2013.
Raitsimring, A., Dalaloyan, A., Collauto, A., Feintuch, A., Meade, T., and Goldfarb, D.: Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures, J. Magn. Reson., 248, 71–80, https://doi.org/10.1016/j.jmr.2014.09.012, 2014.
Raitsimring, A. M., Astashkin, A. V., Poluektov, O. G., and Caravan, P.: High-field pulsed EPR and ENDOR of Gd3+ complexes in glassy solutions, Appl. Magn. Reson., 28, 281–295, https://doi.org/10.1007/BF03166762, 2005.
Razzaghi, S., Qi, M., Nalepa, A. I., Godt, A., Jeschke, G., Savitsky, A., and Yulikov, M.: RIDME Spectroscopy with Gd(III) Centers, J. Phys. Chem. Lett., 5, 3970–3975, https://doi.org/10.1021/jz502129t, 2014.
Salikhov, K. M., Dzuba, S. A., and Raitsimring, A. M.: The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids, J. Magn. Reson., 42, 255–276, https://doi.org/10.1016/0022-2364(81)90216-X, 1981.
Schmidt, T., Wälti, M. A., Baber, J. L., Hustedt, E. J., and Clore, G. M.: Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy, Angew. Chem. Intl. Ed., 55, 15905–15909, https://doi.org/10.1002/anie.201609617, 2016.
Seal, M., Feintuch, A., and Goldfarb, D.: The effect of spin-lattice relaxation on DEER background decay, J. Magn. Reson., 345, 107327, https://doi.org/10.1016/j.jmr.2022.107327, 2022.
Soetbeer, J., Hülsmann, M., Godt, A., Polyhach, Y., and Jeschke, G.: Dynamical decoupling of nitroxides in o-terphenyl: a study of temperature, deuteration and concentration effects, Phys. Chem. Chem. Phys., 20, 1615–1628, https://doi.org/10.1039/C7CP07074H, 2018.
Soetbeer, J., Ibáñez, L. F., Berkson, Z., Polyhach, Y., and Jeschke, G.: Regularized dynamical decoupling noise spectroscopy – a decoherence descriptor for radicals in glassy matrices, Phys. Chem. Chem. Phys., 23, 21664–21676, https://doi.org/10.1039/D1CP03103A, 2021a.
Soetbeer, J., Millen, M., Zouboulis, K., Hülsmann, M., Godt, A., Polyhach, Y., and Jeschke, G.: Dynamical decoupling in water–glycerol glasses: a comparison of nitroxides, trityl radicals and gadolinium complexes, Phys. Chem. Chem. Phys., 23, 5352–5369, https://doi.org/10.1039/D1CP00055A, 2021b.
Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson., 178, 42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006.
Suter, D. and Álvarez, G. A.: Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys., 88, 041001, https://doi.org/10.1103/RevModPhys.88.041001, 2016.
Tyryshkin, A. M., Tojo, S., Morton, J. J. L., Riemann, H., Abrosimov, N. V., Becker, P., Pohl, H.-J., Schenkel, T., Thewalt, M. L. W., Itoh, K. M., and Lyon, S. A.: Electron spin coherence exceeding seconds in high-purity silicon, Nat. Mat., 11, 143–147, https://doi.org/10.1038/nmat3182, 2012.
Wang, G., Liang, X., Chen, L., Gao, Q., Wang, J.-G., Zhang, P., Peng, Q., and Xu, S.: Iridium-Catalyzed Distal Hydroboration of Aliphatic Internal Alkenes, Angew. Chem. Intl. Ed., 58, 8187–8191, https://doi.org/10.1002/anie.201902464, 2019.
Ward, R., Bowman, A., Sozudogru, E., El-Mkami, H., Owen-Hughes, T., and Norman, D. G.: EPR distance measurements in deuterated proteins, J. Magn. Reson., 207, 164–167, https://doi.org/10.1016/j.jmr.2010.08.002, 2010.
Wilson, C. B., Qi, M., Han, S., and Sherwin, M. S.: Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields, J. Phys. Chem. Lett., 14, 10578–10584, https://doi.org/10.1021/acs.jpclett.3c01847, 2023.
Wolfe, J. P.: Direct Observation of a Nuclear Spin Diffusion Barrier, Phys. Rev. Lett., 31, 907–910, https://doi.org/10.1103/PhysRevLett.31.907, 1973.
Yang, Y., Wang, J.-T., Pei, Y.-Y., and Su, X.-C.: Site-specific tagging proteins via a rigid, stable and short thiolether tether for paramagnetic spectroscopic analysis, Chem. Comm., 51, 2824–2827, https://doi.org/10.1039/C4CC08493D, 2015.
Yang, Y., Yang, F., Li, X.-Y., Su, X.-C., and Goldfarb, D.: In-Cell EPR Distance Measurements on Ubiquitin Labeled with a Rigid PyMTA-Gd(III) Tag, J. Phys. Chem. B, 123, 1050–1059, https://doi.org/10.1021/acs.jpcb.8b11442, 2019.
Short summary
Protein structure and motion are key to its function. Using electron paramagnetic resonance (EPR) methods, it is possible to measure distances between magnetic markers like gadolinium ions grafted on proteins. Such measurements rely on the gadolinium phase memory time, determining how long the signal lasts. We studied how nearby atoms and environmental noise affect signal lifetimes using advanced EPR techniques. Our findings show how lifetimes can be extended to design better protein analysis.
Protein structure and motion are key to its function. Using electron paramagnetic resonance...