Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-229-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-229-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A fast sample shuttle to couple high and low magnetic fields and applications in high-resolution relaxometry
Jorge A. Villanueva-Garibay
CORRESPONDING AUTHOR
Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
Andreas Tilch
Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
Ana Paula Aguilar Alva
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Guillaume Bouvignies
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Frank Engelke
Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Agnes Glémot
Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
Ulric B. le Paige
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Giulia Licciardi
Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
Giacomo Parigi
Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
Philippe Pelupessy
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Enrico Ravera
Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy
Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy
Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
Alessandro Ruda
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Lucas Siemons
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Olof Stenström
Chimie Physique et Chimie du Vivant, CPCV, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
Jean-Max Tyburn
Bruker BioSpin, 34 rue de l'Industrie BP 10002, Cedex, 67166 Wissembourg, France
Related authors
No articles found.
Philippe Pelupessy
Magn. Reson., 4, 271–283, https://doi.org/10.5194/mr-4-271-2023, https://doi.org/10.5194/mr-4-271-2023, 2023
Short summary
Short summary
In nuclear magnetic resonance, the magnetization of abundantly present nuclei contributes to the overall field felt by the same nuclei through intermolecular dipolar interactions. This has led to many surprising discoveries, such as multiple-spin echoes and intermolecular cross-peaks in 2D spectroscopy. In this work, the effect of the dipolar field under continuous irradiation is investigated. Various methods to obtain intermolecular transfer of phase coherences are presented.
Daniel Abergel and Fabien Ferrage
Magn. Reson., 4, 111–114, https://doi.org/10.5194/mr-4-111-2023, https://doi.org/10.5194/mr-4-111-2023, 2023
Philippe Pelupessy
Magn. Reson., 3, 43–51, https://doi.org/10.5194/mr-3-43-2022, https://doi.org/10.5194/mr-3-43-2022, 2022
Short summary
Short summary
Strong signals in nuclear magnetic resonance are perturbed by their feedback interaction with the radio frequency circuit, a phenomenon known as
radiation damping. This effect is usually weak and only influences the signals that are at its source. In this work, it is shown that, under certain circumstances, radiation damping can have far-reaching consequences.
Giovanni Bellomo, Enrico Ravera, Vito Calderone, Mauro Botta, Marco Fragai, Giacomo Parigi, and Claudio Luchinat
Magn. Reson., 2, 25–31, https://doi.org/10.5194/mr-2-25-2021, https://doi.org/10.5194/mr-2-25-2021, 2021
Short summary
Short summary
The efficiency of MRI contrast agents can increase by exploiting magnetization transfer effects occurring in slow-rotating nanoparticles containing a paramagnetic metal ion and a large number of exchangeable surface protons, which can increase the water proton relaxation rate. Occurrence of magnetization transfer should also be considered to determine accurate metal–proton distances from the experimental proton relaxation rates for protons farther than 15 Å from the paramagnetic metal.
Ivan V. Zhukov, Alexey S. Kiryutin, Ziqing Wang, Milan Zachrdla, Alexandra V. Yurkovskaya, Konstantin L. Ivanov, and Fabien Ferrage
Magn. Reson., 1, 237–246, https://doi.org/10.5194/mr-1-237-2020, https://doi.org/10.5194/mr-1-237-2020, 2020
Short summary
Short summary
We studied spin dynamics in nuclear spin systems at low magnetic fields, where strong coupling among nuclear spins of the same kind, here 13C, is expected. Such conditions are known to be favorable for coherent polarization transfer. However, to our surprise, interactions with other nuclei, i.e., protons, lead to a breakdown of the strong coupling conditions. By using a two-field nuclear magnetic resonance approach, we can manipulate low field-spin dynamics and reintroduce strong coupling.
Cited articles
Aders, P., Tilch, A., Marquardsen, T., and Tyburn, J.-M.: Pneumatic cable shuttle system for 2FNMR, US patent, US 11 474 172 B1, 2022. Barskiy, D. A., Blanchard, J. W., Budker, D., Eills, J., Pustelny, S., Sheberstov, K. F., Tayler, M. C. D., and Trabesinger, A.: Zero- to Ultralow-field Nuclear Magnetic Resonance, Prog. Nucl. Mag. Res. Sp., 148–149, 101558, https://doi.org/10.1016/j.pnmrs.2025.101558, 2025.
Carravetta, M., Johannessen, O. G., and Levitt, M. H.: Beyond the T1 Limit: Singlet Nuclear Spin States in Low Magnetic Fields, Phys. Rev. Lett., 92, 153003, https://doi.org/10.1103/PhysRevLett.92.153003, 2004.
Charlier, C., Khan, S. N., Marquardsen, T., Pelupessy, P., Reiss, V., Sakellariou, D., Bodenhausen, G., Engelke, F., and Ferrage, F.: Nanosecond Time Scale Motions in Proteins Revealed by High-Resolution NMR Relaxometry, J. Am. Chem. Soc., 135, 18665–18672, https://doi.org/10.1021/ja409820g, 2013.
Chou, C. Y., Chu, M. L., Chang, C. F., and Huang, T. H.: A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR, J. Magn. Reson., 214, 302–308, https://doi.org/10.1016/j.jmr.2011.12.001, 2012.
Chou, C.-Y., Chu, M., Chang, C.-F., Yu, T., Huang, T., and Sakellariou, D.: High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe, J. Biomol. NMR, 66, 187–194, https://doi.org/10.1007/s10858-016-0066-5, 2016.
Cousin, S. F., Charlier, C., Kaderavek, P., Marquardsen, T., Tyburn, J.-M., Bovier, P.-A., Ulzega, S., Speck, T., Wilhelm, D., Engelke, F., Maas, W., Sakellariou, D., Bodenhausen, G., Pelupessy, P., and Ferrage, F.: High-resolution two-field nuclear magnetic resonance spectroscopy, Phys. Chem. Chem. Phys., 18, 33187–33194, https://doi.org/10.1039/C6CP05422F, 2016a.
Cousin, S. F., Kadeřávek, P., Haddou, B., Charlier, C., Marquardsen, T., Tyburn, J.-M., Bovier, P.-A., Engelke, F., Maas, W., Bodenhausen, G., Pelupessy, P., and Ferrage, F.: Recovering Invisible Signals by Two-Field NMR Spectroscopy, Angew. Chem. Int. Ed., 55, 9886–9889, https://doi.org/10.1002/anie.201602978, 2016b.
Grosse, S., Gubaydullin, F., Scheelken, H., Vieth, H. M., and Yurkovskaya, A. V.: Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments, Appl. Magn. Reson., 17, 211–225, 1999.
Hall, A. M. R., Cartlidge, T. A. A., and Pileio, G.: A temperature-controlled sample shuttle for field-cycling NMR, J. Magn. Reson., 317, 106778, https://doi.org/10.1016/j.jmr.2020.106778, 2020.
Helmus, J. J. and Jaroniec, C. P.: Nmrglue: an open source Python package for the analysis of multidimensional NMR data, J. Biomol. NMR, 55, 355–367, https://doi.org/10.1007/s10858-013-9718-x, 2013.
Ivanov, K. L., Pravdivtsev, A. N., Yurkovskaya, A. V., Vieth, H.-M., and Kaptein, R.: The role of level anti-crossings in nuclear spin hyperpolarization, Prog. Nucl. Mag. Res. Sp., 81, 1–36, https://doi.org/10.1016/j.pnmrs.2014.06.001, 2014.
Kadeřávek, P., Bolik-Coulon, N., Cousin, S. F., Marquardsen, T., Tyburn, J.-M., Dumez, J.-N., and Ferrage, F.: Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation, J. Phys. Chem. Lett., 10, 5917–5922, https://doi.org/10.1021/acs.jpclett.9b02233, 2019.
Kerwood, D. J. and Bolton, P. H.: A sample-shuttling device suitable for two-dimensional low-field NMR, J. Magn. Reson., 75, 142–146, https://doi.org/10.1016/0022-2364(87)90323-4, 1987.
Kimmich, R. and Anoardo, E.: Field-cycling NMR relaxometry, Prog. Nucl. Mag. Res. Sp., 44, 257–320, https://doi.org/10.1016/j.pnmrs.2004.03.002, 2004.
Kiryutin, A. S., Pravdivtsev, A. N., Ivanov, K. L., Grishin, Y. A., Vieth, H.-M., and Yurkovskaya, A. V.: A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments, J. Magn. Reson., 263, 79–91, https://doi.org/10.1016/j.jmr.2015.11.017, 2016.
Li, H., Parigi, G., Luchinat, C., and Meade, T. J.: Bimodal Fluorescence-Magnetic Resonance Contrast Agent for Apoptosis Imaging, J. Am. Chem. Soc., 141, 6224–6233, https://doi.org/10.1021/jacs.8b13376, 2019.
Li, S., Yang, H., Hofstetter, H., Tonelli, M., and Cavagnero, S.: Magnetic-Field Dependence of LC-Photo-CIDNP in the Presence of Target Molecules Carrying a Quasi-Isolated Spin Pair, Appl. Magn. Reson., 54, 59–75, https://doi.org/10.1007/s00723-022-01506-7, 2023.
Miesel, K., Ivanov, K. L., Yurkovskaya, A. V., and Vieth, H.-M.: Coherence transfer during field-cycling NMR experiments, Chem. Phys. Lett., 425, 71–76, https://doi.org/10.1016/j.cplett.2006.05.025, 2006.
Miéville, P., Jannin, S., and Bodenhausen, G.: Relaxometry of insensitive nuclei: Optimizing dissolution dynamic nuclear polarization, J. Magn. Reson., 210, 137–140, https://doi.org/10.1016/j.jmr.2011.02.006, 2011.
Patil, V. P., Sandt, J. D., Kolle, M., and Dunkel, J.: Topological mechanics of knots and tangles, Science, 367, 71–75, https://doi.org/10.1126/science.aaz0135, 2020.
Pileio, G., Carravetta, M., and Levitt, M. H.: Extremely Low-Frequency Spectroscopy in Low-Field Nuclear Magnetic Resonance, Phys. Rev. Lett., 103, 083002, https://doi.org/10.1103/PhysRevLett.103.083002, 2009.
Pileio, G., Carravetta, M., and Levitt, M. H.: Storage of nuclear magnetization as long-lived singlet order in low magnetic field, P. Natl. Acad. Sci. USA, 107, 17135–17139, https://doi.org/10.1073/pnas.1010570107, 2010.
Pravdivtsev, A. N., Ivanov, K. L., Yurkovskaya, A. V., Petrov, P. A., Limbach, H.-H., Kaptein, R., and Vieth, H.-M.: Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study, J. Magn. Reson., 261, 73–82, https://doi.org/10.1016/j.jmr.2015.10.006, 2015.
Pu, M. M., Feng, J. W., Redfield, A. G., and Roberts, M. F.: Enzymology with a Spin-Labeled Phospholipase C: Soluble Substrate Binding by P-31 NMR from 0.005 to 11.7 T, Biochemistry, 48, 8282–8284, https://doi.org/10.1021/bi901190j, 2009.
Ravera, E., Luchinat, C., and Parigi, G.: Basic facts and perspectives of Overhauser DNP NMR, Hyperpolarized NMR Comes Age, 264, 78–87, https://doi.org/10.1016/j.jmr.2015.12.013, 2016.
Redfield, A. G.: Shuttling device for high-resolution measurements of relaxation and related phenomena in solution at low field, using a shared commercial 500 MHz NMR instrument, Magn. Reson. Chem., 41, 753–768, https://doi.org/10.1002/mrc.1264, 2003.
Redfield, A. G.: High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument, J. Biomol. NMR, 52, 159–177, https://doi.org/10.1007/s10858-011-9594-1, 2012.
Reese, M., Lennartz, D., Marquardsen, T., Hofer, P., Tavernier, A., Carl, P., Schippmann, T., Bennati, M., Carlomagno, T., Engelke, F., and Griesinger, C.: Construction of a liquid-state NMR DNP shuttle spectrometer: First experimental results and evaluation of optimal performance characteristics, Appl. Magn. Reson., 34, 301–311, https://doi.org/10.1007/s00723-008-0131-7, 2008.
Reese, M., Turke, M. T., Tkach, I., Parigi, G., Luchinat, C., Marquardsen, T., Tavernier, A., Hofer, P., Engelke, F., Griesinger, C., and Bennati, M.: H-1 and C-13 Dynamic Nuclear Polarization in Aqueous Solution with a Two-Field (0.35 T 14 T) Shuttle DNP Spectrometer, J. Am. Chem. Soc., 131, 15086–15087, https://doi.org/10.1021/ja905959n, 2009.
Robertson, T. B. R., Bannister, R. C., Cartlidge, T. A. A., Hugger, T., Breham, S., Zick, K., Engelke, F., Thompson, S., and Pileio, G.: A dual-core NMR system for field-cycling singlet assisted diffusion NMR, Front. Chem., 11, 1229586, https://doi.org/10.3389/fchem.2023.1229586, 2023.
Ruda, A., Aguilar Alva, A. P., Licciardi, G., Siemons, L., Villanueva-Garibay, J. A., Stenström, O., Parigi, G., and Ferrage, F.: Data for “A fast sample shuttle to couple high and low magnetic fields and applications in high-resolution relaxometry”, Zenodo [data set], https://doi.org/10.5281/zenodo.16894282, 2025.
Sarkar, R., Ahuja, P., Vasos, P. R., Bornet, A., Wagnières, O., and Bodenhausen, G.: Long-lived coherences for line-narrowing in high-field NMR, Prog. Nucl. Mag. Res. Sp., 59, 83–90, https://doi.org/10.1016/j.pnmrs.2010.10.002, 2011.
Victor, K., Kavolius, V., and Bryant, R. G.: Magnetic relaxation dispersion probe, J. Magn. Reson., 171, 253–257, https://doi.org/10.1016/j.jmr.2004.08.025, 2004.
Wang, Z., Pisano, S., Ghini, V., Kadeřávek, P., Zachrdla, M., Pelupessy, P., Kazmierczak, M., Marquardsen, T., Tyburn, J.-M., Bouvignies, G., Parigi, G., Luchinat, C., and Ferrage, F.: Detection of Metabolite–Protein Interactions in Complex Biological Samples by High-Resolution Relaxometry: Toward Interactomics by NMR, J. Am. Chem. Soc., 143, 9393–9404, https://doi.org/10.1021/jacs.1c01388, 2021.
Short summary
Investigating NMR (nuclear magnetic resonance) phenomena at variable magnetic fields is useful and insightful for hyperpolarization and molecular dynamics in particular. To benefit from high-resolution at high magnetic fields, field-dependent investigations can be performed using a high-field NMR spectrometer, with a sample shuttle apparatus for field cycling. Here, we introduce a new design of a sample shuttle which is fast, reliable, and narrow. We show a series of applications involving small molecules and a protein in solution.
Investigating NMR (nuclear magnetic resonance) phenomena at variable magnetic fields is useful...