Articles | Volume 6, issue 1
https://doi.org/10.5194/mr-6-93-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-93-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ih-RIDME: a pulse EPR experiment to probe the heterogeneous nuclear environment
Sergei Kuzin
CORRESPONDING AUTHOR
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Victoriya N. Syryamina
Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, Novosibirsk 630090, Russia
Mian Qi
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
Moritz Fischer
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
Miriam Hülsmann
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
Adelheid Godt
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
Gunnar Jeschke
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Maxim Yulikov
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Related authors
No articles found.
Leonardo Passerini, Eduard Bobylev, Felix J. de Zwart, Henrik Hintz, Adelheid Godt, Bas de Bruin, Joost Reek, and Martina Huber
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-17, https://doi.org/10.5194/mr-2025-17, 2025
Preprint under review for MR
Short summary
Short summary
We describe electron paramagnetic resonance (EPR) based distance measurements between six, respectively eight copper(II)-ions that occupy octahedral or cubic positions in self-assembled nano-meter-sized spherical cages. These cages, which are reminiscent of soccer balls, are made up of inorganic ligands and Pd-ions. Their geometric shape is aesthetically pleasing, and to show that the double electron electron resonance technique works for more than two copper-ions is the novelty of this study.
Gunnar Jeschke, Nino Wili, Yufei Wu, Sergei Kuzin, Hugo Karas, Henrik Hintz, and Adelheid Godt
Magn. Reson., 6, 15–32, https://doi.org/10.5194/mr-6-15-2025, https://doi.org/10.5194/mr-6-15-2025, 2025
Short summary
Short summary
Electron spins sense their environment via magnetic interactions. An important contribution stems from nuclear spins in their vicinity. They cause loss of coherence and thus reduce resolution of spectra obtained by experiments on electron spins and the efficiency of transferring electron-spin magnetization to other nuclear spins. Here we study how protons in trityl radicals contribute to coherence loss. Such coherence loss is slower in the presence of a strong microwave field.
Agathe Vanas, Janne Soetbeer, Frauke Diana Breitgoff, Henrik Hintz, Muhammad Sajid, Yevhen Polyhach, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov, and Daniel Klose
Magn. Reson., 4, 1–18, https://doi.org/10.5194/mr-4-1-2023, https://doi.org/10.5194/mr-4-1-2023, 2023
Short summary
Short summary
Nanometre distance measurements between spin labels by pulse EPR techniques yield structural information on the molecular level. Here, backed by experimental data, we derive a description for the total signal of the single-frequency technique for refocusing dipolar couplings (SIFTER), showing how the different spin–spin interactions give rise to dipolar signal and background – the latter has thus far been unknown.
Cited articles
Abdullin, D., Duthie, F., Meyer, A., Müller, E. S., Hagelueken, G., and Schiemann, O.: Comparison of PELDOR and RIDME for Distance Measurements between Nitroxides and Low-Spin Fe(III) Ions, J. Phys. Chem. B, 119, 13534–13542, https://doi.org/10.1021/acs.jpcb.5b02118, 2015. a
Abragam, A.: The principles of nuclear magnetism, 32, Oxford University Press, ISBN: 9780198520146, 1961. a
Asanbaeva, N. B., Novopashina, D. S., Rogozhnikova, O. Y., Tormyshev, V. M., Kehl, A., Sukhanov, A. A., Shernyukov, A. V., Genaev, A. M., Lomzov, A. A., Bennati, M., Meyer, A., and Bagryanskaya, E. G.: 19F electron nuclear double resonance (ENDOR) spectroscopy for distance measurements using trityl spin labels in DNA duplexes, Phys. Chem. Chem. Phys., 25, 23454–23466, https://doi.org/10.1039/D3CP02969G, 2023. a
Bahrenberg, T., Jahn, S. M., Feintuch, A., Stoll, S., and Goldfarb, D.: The decay of the refocused Hahn echo in double electron–electron resonance (DEER) experiments, Magn. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021, 2021. a
Brown, S. P.: Probing proton–proton proximities in the solid state, Prog. Nucl. Magn. Reson. Spectrosc., 50, 199–251, https://doi.org/10.1016/j.pnmrs.2006.10.002, 2007. a
Chessari, A., Cousin, S. F., Jannin, S., and Stern, Q.: Role of electron polarization in nuclear spin diffusion, Phys. Rev. B, 107, 224429, https://doi.org/10.1103/PhysRevB.107.224429, 2023. a
Dikanov, S. A. and Tsvetkov, Y.: Electron spin echo envelope modulation (ESEEM) spectroscopy, CRC press, ISBN: 9780849342240, 1992. a
Dorn, G., Gmeiner, C., de Vries, T., Dedic, E., Novakovic, M., Damberger, F. F., Maris, C., Finol, E., Sarnowski, C. P., Kohlbrecher, J., Welsch, T. J., Sreenath, B., Mezzenga, R., Aebershold, R., Leitner, A., Yulikov, M., Jeschke, G., and Allain, F. H.-T.: Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility, Nat. Commun., 14, 6429, https://doi.org/10.1038/s41467-023-42012-z, 2023. a
Emmanouilidis, L., Esteban-Hofer, L., Damberger, F. F., de Vries, T., Nguyen, C. K., Ibanez, L. F., Mergenthal, S., Klotzsch, E., Yulikov, M., Jeschke, G., and Allain, F. H.-T.: NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation, Nat. Chem. Biol., 17, 608–614, 2021. a
Endeward, B., Hu, Y., Bai, G., Liu, G., Prisner, T. F., and Fang, X.: Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy, Biophys. J., 121, 37–43, 2022. a
Fábregas Ibáñez, L., Jeschke, G., and Stoll, S.: DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data, Magn. Reson., 1, 209–224, 2020. a
Gauger, M., Heinz, M., Halbritter, A.-L. J., Stelzl, L. S., Erlenbach, N., Hummer, G., Sigurdsson, S. T., and Prisner, T. F.: Structure and internal dynamics of short RNA duplexes determined by a combination of pulsed EPR methods and MD simulations, Angew. Chem. Int. Ed. Engl., 63, e202402498, https://doi.org/10.1002/anie.202402498, 2024. a
Hoffmann, M. M., Too, M. D., Paddock, N. A., Horstmann, R., Kloth, S., Vogel, M., and Buntkowsky, G.: On the behavior of the ethylene glycol components of polydisperse polyethylene glycol PEG200, J. Phys. Chem. B, 127, 1178–1196, 2023. a
Hu, P. and Walker, L. R.: Spectral-diffusion decay in echo experiments, Phys. Rev. B, 18, 1300–1305, https://doi.org/10.1103/PhysRevB.18.1300, 1978. a
Ibáñez, L. F. and Jeschke, G.: General regularization framework for DEER spectroscopy, J. Magn. Reson., 300, 28–40, 2019. a
Jahn, S. M., Canarie, E. R., and Stoll, S.: Mechanism of electron spin decoherence in a partially deuterated glassy matrix, J. Phys. Chem. Lett., 13, 5474–5479, 2022. a
Jeschke, G.: Nuclear pair electron spin echo envelope modulation, J. Magn. Reson. Open, 14, 100094, https://doi.org/10.1016/j.jmro.2023.100094, 2023. a, b, c
Jeschke, G., Bender, A., Paulsen, H., Zimmermann, H., and Godt, A.: Sensitivity enhancement in pulse EPR distance measurements, J. Magn. Reson., 169, 1–12, 2004. a
Jeschke, G., Chechik, V., Ionita, P., Godt, A., Zimmermann, H., Banham, J., Timmel, C. R., Hilger, D., and Jung, H.: DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data, Appl. Magn. Reson., 30, 473–498, 2006. a
Judd, M., Abdelkader, E. H., Qi, M., Harmer, J. R., Huber, T., Godt, A., Savitsky, A., Otting, G., and Cox, N.: Short-range ENDOR distance measurements between Gd(iii) and trifluoromethyl labels in proteins, Phys. Chem. Chem. Phys., 24, 25214–25226, https://doi.org/10.1039/D2CP02889A, 2022. a
Keller, K., Doll, A., Qi, M., Godt, A., Jeschke, G., and Yulikov, M.: Averaging of Nuclear Modulation Artefacts in RIDME Experiments, J. Magn. Reson., 272, 108–113, 2016. a
Keller, K., Mertens, V., Qi, M., Nalepa, A. I., Godt, A., Savitsky, A., Jeschke, G., and Yulikov, M.: Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd (III)-based spin labels, Phys. Chem. Chem. Phys., 19, 17856–17876, 2017. a
Keller, K., Qi, M., Gmeiner, C., Ritsch, I., Godt, A., Jeschke, G., Savitsky, A., and Yulikov, M.: Intermolecular background decay in RIDME experiments, Phys. Chem. Chem. Phys., 21, 8228–8245, 2019. a
Klauder, J. R. and Anderson, P. W.: Spectral Diffusion Decay in Spin Resonance Experiments, Phys. Rev., 125, 912–932, https://doi.org/10.1103/PhysRev.125.912, 1962. a
Kulik, L., Dzuba, S., Grigoryev, I., and Tsvetkov, Y. D.: Electron dipole–dipole interaction in ESEEM of nitroxide biradicals, Chem. Phys. Lett., 343, 315–324, 2001. a
Kuzin, S.: Dataset for: ih-RIDME: a pulse EPR experiment to probe the heterogeneous nuclear environment, Zenodo [Data set], https://doi.org/10.5281/zenodo.14017046, 2024. a
Lovett, J., Lovett, B. W., and Harmer, J.: DEER-Stitch: Combining three-and four-pulse DEER measurements for high sensitivity, deadtime free data, J. Magn. Reson., 223, 98–106, 2012. a
Meier, B.: Polarization transfer and spin diffusion in solid-state NMR, Adv. Magn. Opt. Reson., 18, 1–116, 1994. a
Meyer, A., Dechert, S., Dey, S., Höbartner, C., and Bennati, M.: Measurement of angstrom to nanometer molecular distances with 19F nuclear spins by EPR/ENDOR spectroscopy, Angew. Chem. Int. Ed., 59, 373–379, 2020. a
Milov, A., Ponomarev, A., and Tsvetkov, Y. D.: Electron-electron double resonance in electron spin echo: Model biradical systems and the sensitized photolysis of decalin, Chem. Phys. Lett., 110, 67–72, 1984. a
Noethig-Laslo, V., Cevc, P., Arčon, D., and Šentjurc, M.: Comparison of CW-EPR and ESEEM technique for determination of water permeability profile in liposome membranes, Appl. Magn. Reson., 27, 303–309, 2004. a
Pang, Z., Sheberstov, K., Rodin, B. A., Lumsden, J., Banerjee, U., Abergel, D., Mentink-Vigier, F., Bodenhausen, G., and Tan, K. O.: Hypershifted spin spectroscopy with dynamic nuclear polarization at 1.4 K, Sci. Adv., 10, eadr7160, https://doi.org/10.26434/chemrxiv-2024-zr8zv, 2024. a
Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H.: Dead-time free measurement of dipole–dipole interactions between electron spins, J. Magn. Reson., 142, 331–340, https://doi.org/10.1006/jmre.1999.1944, 1999. a
Portis, A. M.: Spectral Diffusion in Magnetic Resonance, Phys. Rev., 104, 584–588, https://doi.org/10.1103/PhysRev.104.584, 1956. a
Russell, H., Cura, R., and Lovett, J. E.: DEER data analysis software: a comparative guide, Front. Mol. Biosci., 9, 915167, https://doi.org/10.3389/fmolb.2022.915167, 2022. a
Seal, M., Zhu, W., Dalaloyan, A., Feintuch, A., Bogdanov, A., Frydman, V., Su, X.-C., Gronenborn, A. M., and Goldfarb, D.: GdIII-19F Distance Measurements for Proteins in Cells by Electron-Nuclear Double Resonance, Ang. Chem. Int. Ed., 62, e202218780, https://doi.org/10.1002/anie.202218780, 2023. a
Soetbeer, J., Hülsmann, M., Godt, A., Polyhach, Y., and Jeschke, G.: Dynamical decoupling of nitroxides in o-terphenyl: a study of temperature, deuteration and concentration effects, Phys. Chem. Chem. Phys., 20, 1615–1628, 2018. a
Stern, Q., Cousin, S. F., Mentink-Vigier, F., Pinon, A. C., Elliott, S. J., Cala, O., and Jannin, S.: Direct observation of hyperpolarization breaking through the spin diffusion barrier, Sci. Adv., 7, eabf5735, https://doi.org/10.1126/sciadv.abf5735, 2021. a
Volkov, A., Dockter, C., Bund, T., Paulsen, H., and Jeschke, G.: Pulsed EPR determination of water accessibility to spin-labeled amino acid residues in LHCIIb, Biophys. J., 96, 1124–1141, 2009. a
Worswick, S. G., Spencer, J. A., Jeschke, G., and Kuprov, I.: Deep neural network processing of DEER data, Sci. Adv., 4, eaat5218, https://doi.org/10.1126/sciadv.aat5218, 2018. a, b
Wort, J. L., Ackermann, K., Giannoulis, A., and Bode, B. E.: Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME, J. Magn. Reson., 352, 107460, https://doi.org/10.1016/j.jmr.2023.107460, 2023. a, b
Short summary
A new pulse electron paramagnetic resonance method is presented to quantify the local nuclear environment of an electron spin centre. We provide a detailed assessment of this technique. We review the theoretical principles, discuss the data analysis and demonstrate an application to a spin-labelled macromolecule supported by in silico modelling. The method can be applied to the characterization of heterogeneous systems, such as unstructured or semi-structured (bio)macromolecules.
A new pulse electron paramagnetic resonance method is presented to quantify the local nuclear...