Articles | Volume 1, issue 1
https://doi.org/10.5194/mr-1-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Origin of the residual line width under frequency-switched Lee–Goldburg decoupling in MAS solid-state NMR
Johannes Hellwagner
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Liam Grunwald
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Manuel Ochsner
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Daniel Zindel
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
Related authors
No articles found.
Luzian Thomas and Matthias Ernst
Magn. Reson., 5, 153–166, https://doi.org/10.5194/mr-5-153-2024, https://doi.org/10.5194/mr-5-153-2024, 2024
Short summary
Short summary
The paper investigates the suitability of an existing solution-state NMR spin decoupling sequence for use as a low-power solid-state NMR decoupling sequence under sample spinning. Complications arise from resonance conditions between the spin modulations by the pulse sequence and the sample rotation. We show that the timing of the pulse sequence is the most important criterion needed to achieve good decoupling. The paper gives recommendations for optimum parameters.
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024, https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Short summary
To characterize the amplitude of dynamic processes in molecules, anisotropic parameters can be measured using solid-state NMR. However, the timescales of motion that lead to such a scaling of the anisotropic interactions are not clear. Using numerical simulations in small spin systems, we could show that mostly the magnitude of the anisotropic interaction determines the range of timescales detected by the scaled anisotropic interaction, and experimental parameters play a very minor role.
Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst
Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022, https://doi.org/10.5194/mr-3-203-2022, 2022
Short summary
Short summary
Dynamic nuclear polarization requires a waveguide that connects the cold (1–10 K) sample space to the outside. To reduce the heating of the sample, a waveguide is produced from steel which has low thermal conductivity but attenuates the microwaves. Therefore, the inside of the waveguide should be plated with silver to reduce electrical losses. We show a new simple way to electroplate such waveguides with a thin silver layer and show that this improves the experimental performance.
Václav Římal, Morgane Callon, Alexander A. Malär, Riccardo Cadalbert, Anahit Torosyan, Thomas Wiegand, Matthias Ernst, Anja Böckmann, and Beat H. Meier
Magn. Reson., 3, 15–26, https://doi.org/10.5194/mr-3-15-2022, https://doi.org/10.5194/mr-3-15-2022, 2022
Short summary
Short summary
Through the advent of fast magic-angle spinning and high magnetic fields, the spectral resolution of solid-state NMR spectra has recently been greatly improved. To take full advantage of this gain, the magnetic field must be stable over the experiment time of hours or even days. We thus monitor the field by simultaneous acquisition of a frequency reference (SAFR) and use this information to correct multidimensional spectra improving resolution and availability of productive magnet time.
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021, https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary
Short summary
The radio-frequency (rf) field amplitude in solid-state NMR probes changes over the sample volume, i.e. different parts of the sample will experience different nutation frequencies. If the sample is rotated inside the coil as it is typical for magic angle spinning in solid-state NMR, such a position-dependent inhomogeneity leads to an additional time dependence of the rf field amplitude. We show that such time-dependent modulations do not play an important role in many experiments.
Matías Chávez, Thomas Wiegand, Alexander A. Malär, Beat H. Meier, and Matthias Ernst
Magn. Reson., 2, 499–509, https://doi.org/10.5194/mr-2-499-2021, https://doi.org/10.5194/mr-2-499-2021, 2021
Short summary
Short summary
Sample rotation around the magic angle averages out the dipolar couplings in homonuclear spin systems in a first-order approximation. However, in higher orders, residual coupling terms remain and lead to a broadening of the spectral lines. We investigate the source of this broadening and the effects on the powder line shape in small spin systems with and without chemical shifts. We show that one can expect different scaling behavior as a function of the spinning frequency for the two cases.
Jolanda E. Reusser, René Verel, Daniel Zindel, Emmanuel Frossard, and Timothy I. McLaren
Biogeosciences, 17, 5079–5095, https://doi.org/10.5194/bg-17-5079-2020, https://doi.org/10.5194/bg-17-5079-2020, 2020
Short summary
Short summary
Inositol phosphates (IPs) are a major pool of organic P in soil. However, information on their diversity and abundance in soil is limited. We isolated IPs from soil and characterised them using solution nuclear magnetic resonance (NMR) spectroscopy. For the first time, we provide direct spectroscopic evidence for the existence of a multitude of lower-order IPs in soil extracts previously not detected with NMR. Our findings will help provide new insight into the cycling of IPs in ecosystems.
Kathrin Aebischer, Nino Wili, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 1, 187–195, https://doi.org/10.5194/mr-1-187-2020, https://doi.org/10.5194/mr-1-187-2020, 2020
Short summary
Short summary
Resonant pulses in a spin-lock frame are used to select parts of the rf-field distribution in NMR experiments. Such pulses can be implemented in a straightforward way and arbitrarily shaped pulses can be used. We show an application of such pulses in homonuclear decoupling where restricting the amplitude distribution of the rf field leads to improved performance.
Related subject area
Field: Solid-state NMR | Topic: Theory
Analytical treatment of proton double-quantum NMR intensity build-up: multi-spin couplings and the flip-flop term
Performance of the cross-polarization experiment in conditions of radiofrequency field inhomogeneity and slow to ultrafast magic angle spinning (MAS)
Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments
Residual dipolar line width in magic-angle spinning proton solid-state NMR
Heteronuclear and homonuclear radio-frequency-driven recoupling
Nail Fatkullin, Ivan Brekotkin, and Kay Saalwächter
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-15, https://doi.org/10.5194/mr-2024-15, 2024
Revised manuscript accepted for MR
Short summary
Short summary
We believe that, in addition to nontrivial theoretical interest, the proposed work offers experimenters a reliable time interval in which the experimentally measured signal allows a relatively simple interpretation uncomplicated by contributions from three-particle dynamical correlations of having spins nuclei in condensed matter.
Andrej Šmelko, Jan Blahut, Bernd Reif, and Zdeněk Tošner
Magn. Reson., 4, 199–215, https://doi.org/10.5194/mr-4-199-2023, https://doi.org/10.5194/mr-4-199-2023, 2023
Short summary
Short summary
We present a tutorial on the cross-polarization experiment, which has been the main method of magnetization transfer in solid-state NMR for decades. We explain the principles of its volume-selective performance in the presence of magic angle spinning and radiofrequency field inhomogeneity and the decrease in efficiency with increasing sample rotation frequency.
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021, https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary
Short summary
The radio-frequency (rf) field amplitude in solid-state NMR probes changes over the sample volume, i.e. different parts of the sample will experience different nutation frequencies. If the sample is rotated inside the coil as it is typical for magic angle spinning in solid-state NMR, such a position-dependent inhomogeneity leads to an additional time dependence of the rf field amplitude. We show that such time-dependent modulations do not play an important role in many experiments.
Matías Chávez, Thomas Wiegand, Alexander A. Malär, Beat H. Meier, and Matthias Ernst
Magn. Reson., 2, 499–509, https://doi.org/10.5194/mr-2-499-2021, https://doi.org/10.5194/mr-2-499-2021, 2021
Short summary
Short summary
Sample rotation around the magic angle averages out the dipolar couplings in homonuclear spin systems in a first-order approximation. However, in higher orders, residual coupling terms remain and lead to a broadening of the spectral lines. We investigate the source of this broadening and the effects on the powder line shape in small spin systems with and without chemical shifts. We show that one can expect different scaling behavior as a function of the spinning frequency for the two cases.
Evgeny Nimerovsky, Kai Xue, Kumar Tekwani Movellan, and Loren B. Andreas
Magn. Reson., 2, 343–353, https://doi.org/10.5194/mr-2-343-2021, https://doi.org/10.5194/mr-2-343-2021, 2021
Short summary
Short summary
The RFDR sequence has been widely used for homonuclear recoupling. The paper describes a heteronuclear version of RFDR. HET-RFDR sequence transfers longitudinal polarization between heteronuclear pairs by applying RFDR on two channels simultaneously. We perform an operator analysis of HET-RFDR and RFDR. Such an analysis allows for better understanding of the influence of offsets and paths of magnetization transfers for both these experiments, as well as the crucial role of XY phase cycling.
Cited articles
Agarwal, V., Penzel, S., Szekely, K., Cadalbert, R., Testori, E., Oss, A.,
Past, J., Samoson, A., Ernst, M., Böckmann, A., and Meier, B. H.: DeNovo
3-D Structure Determination from Sub-milligram Protein Samples by Solid-State
100 kHz MAS NMR Spectroscopy, Angew. Chem. Int. Ed., 53, 12253–12256,
https://doi.org/10.1002/anie.201405730, 2014.
Andreas, L. B., Jaudzems, K., Stanek, J., Lalli, D., Bertarello, A., Le
Marchand, T., Cala-De Paepe, D., Kotelovica, S., Akopjana, I., Knott, B.,
Wegner, S., Engelke, F., Lesage, A., Emsley, L., Tars, K., Herrmann, T., and
Pintacuda, G.: Structure of fully protonated proteins by proton-detected
magic-angle spinning NMR, P. Natl. Acad. Sci. USA, 113, 9187–9192,
https://doi.org/10.1073/pnas.1602248113, 2016.
Barbara, T. M., Martin, J. F., and Wurl, J. G.: Phase transients in NMR probe
circuits, J. Magn. Reson., 93, 497–508,
https://doi.org/10.1016/0022-2364(91)90078-8, 1991.
Barfield, M.: Structural dependencies of interresidue scalar coupling h3JNC'
and donor 1H chemical shifts in the hydrogen bonding regions of proteins, J.
Am. Chem. Soc., 124, 4158–4168, https://doi.org/10.1021/ja012674v, 2002.
Berglund, B. and Vaughan, R. W.: Correlations between proton chemical shift
tensors, deuterium quadrupole couplings, and bond distances for hydrogen
bonds in solids, J. Chem. Phys., 73, 2037–2043, https://doi.org/10.1063/1.440423,
1980.
Bielecki, A., Kolbert, A. C., De Groot, H. J. M., Griffin, R. G., and Levitt,
M. H.: Frequency-Switched Lee-Goldburg Sequences in Solids, Adv. Magn. Reson., 14, 111–124, 1990.
Bosman, L., Madhu, P. K., Vega, S., and Vinogradov, E.: Improvement of
homonuclear dipolar decoupling sequences in solid-state nuclear magnetic
resonance utilising radiofrequency imperfections, J. Magn. Reson., 169,
39–48, https://doi.org/10.1016/j.jmr.2004.04.001, 2004.
Brouwer, D. H. and Horvath, M.: Minimizing the effects of RF inhomogeneity
and phase transients allows resolution of two peaks in the 1H CRAMPS NMR
spectrum of adamantane, Solid State Nucl. Magn. Reson., 71, 30–40,
https://doi.org/10.1016/j.ssnmr.2015.10.005, 2015.
Burum, D. P. and Rhim, W. K.: An improved NMR technique for homonuclear
dipolar decoupling in solids: Application to polycrystalline ice, J. Chem.
Phys., 70, 3553–3554, https://doi.org/10.1063/1.437892, 1979a.
Burum, D. P. and Rhim, W. K.: Analysis of multiple pulse NMR in solids III,
J. Chem. Phys., 71, 944–956, https://doi.org/10.1063/1.438385, 1979b.
Cheng, V. B., Suzukawa, H. H., and Wolfsberg, M.: Investigations of a
nonrandom numerical method for multidimensional integration, J. Chem. Phys.,
59, 3992–3999, https://doi.org/10.1063/1.1680590, 1973.
Dyson, F. J.: The radiation theories of Tomonaga, Schwinger, and Feynman,
Phys. Rev., 75, 486–502, https://doi.org/10.1103/PhysRev.75.486, 1949.
Ernst, M., Samoson, A., and Meier, B. H.: Decoupling and recoupling using
continuous-wave irradiation in magic-angle-spinning solid-state NMR: A
unified description using bimodal Floquet theory, J. Chem. Phys., 123, 064102, https://doi.org/10.1063/1.1944291, 2005.
Ernst, R. R., Bodenhausen, G., and Wokaun, A.: Principles of Nuclear Magnetic
Resonance in One and Two Dimensions, Oxford University, 1990.
Gan, Z., Madhu, P. K., Amoureux, J. P., Trébosc, J., and Lafon, O.: A
tunable homonuclear dipolar decoupling scheme for high-resolution proton NMR
of solids from slow to fast magic-angle spinning, Chem. Phys. Lett.,
503, 167–170, https://doi.org/10.1016/j.cplett.2010.12.070, 2011.
Garon, A., Zeier, R., and Glaser, S. J.: Visualizing operators of coupled
spin systems, Phys. Rev. A – At. Mol. Opt. Phys., 91, 1–28,
https://doi.org/10.1103/PhysRevA.91.042122, 2015.
Goldburg, W. I. and Lee, M.: Nuclear magnetic resonance line narrowing by a
rotating rf field, Phys. Rev. Lett., 11, 255–258,
https://doi.org/10.1103/PhysRevLett.11.255, 1963.
Goldman, M. and Tekely, P.: Effect of radial RF field on MAS spectra,
Comptes Rendus l'Academie des Sci. – Ser. IIc Chem., 4, 795–800,
https://doi.org/10.1016/S1387-1609(01)01310-X, 2001.
Grimminck, D. L. A. G., Vasa, S. K., Meerts, W. L., Kentgens, A. P. M., and
Brinkmann, A.: EASY-GOING DUMBO on-spectrometer optimisation of phase
modulated homonuclear decoupling sequences in solid-state NMR, Chem. Phys.
Lett., 509, 186–191, https://doi.org/10.1016/j.cplett.2011.04.079, 2011.
Haeberlen, U.: High Resolution NMR in Solids: Selective Averaging, Academic
Press., 1976.
Halse, M. E. and Emsley, L.: A common theory for phase-modulated homonuclear
decoupling in solid-state NMR, Phys. Chem. Chem. Phys., 14, 9121–9130,
https://doi.org/10.1039/c2cp40720e, 2012.
Halse, M. E. and Emsley, L.: Improved phase-modulated homonuclear dipolar
decoupling for solid-state NMR spectroscopy from symmetry considerations, J.
Phys. Chem. A, 117, 5280–5290, https://doi.org/10.1021/jp4038733, 2013.
Halse, M. E., Schlagnitweit, J., and Emsley, L.: High-resolution1H
solid-state NMR spectroscopy using windowed LG4 homonuclear dipolar
decoupling, Isr. J. Chem., 54, 136–146, https://doi.org/10.1002/ijch.201300101,
2014.
Hellwagner, J., Sharma, K., Tan, K. O., Wittmann, J. J., Meier, B. H.,
Madhu, P. K., and Ernst, M.: Optimizing symmetry-based recoupling sequences
in solid-state NMR by pulse-transient compensation and asynchronous
implementation, J. Chem. Phys., 146, 134201, https://doi.org/10.1063/1.4989542, 2017.
Hellwagner, J., Wili, N., Ibáñez, L. F., Wittmann, J. J., Meier, B.
H., and Ernst, M.: Transient effects in π-pulse sequences in MAS
solid-state NMR, J. Magn. Reson., 287, 65–73,
https://doi.org/10.1016/j.jmr.2017.12.015, 2018.
Lee, M. and Goldburg, W. I.: Nuclear-magnetic-resonance line narrowing by a
rotating rf field, Phys. Rev., 140, 1261–1271,
https://doi.org/10.1103/PhysRev.140.A1261, 1965.
Leskes, M., Madhu, P. K., and Vega, S.: A broad-banded z-rotation windowed
phase-modulated Lee-Goldburg pulse sequence for 1H spectroscopy in
solid-state NMR, Chem. Phys. Lett., 447, 370–374,
https://doi.org/10.1016/j.cplett.2007.09.041, 2007.
Leskes, M., Madhu, P. K., and Vega, S.: Why does PMLG proton decoupling work
at 65 kHz MAS?, J. Magn. Reson., 199, 208–213,
https://doi.org/10.1016/j.jmr.2009.05.003, 2009.
Leskes, M., Madhu, P. K., and Vega, S.: Floquet theory in solid-state nuclear
magnetic resonance, Prog. Nucl. Magn. Reson. Spectrosc., 57, 345–380,
https://doi.org/10.1016/j.pnmrs.2010.06.002, 2010.
Levitt, M. H.: Symmetry-Based Pulse Sequences in Magic-Angle Spinning
Solid-State NMR, in: Encyclopedia of Magnetic Resonance, 9, 165–196, 2007.
Levitt, M. H., Oas, T. G., and Griffin, R. G.: Rotary Resonance Recoupling in
Heteronuclear Spin Pair Systems, Isr. J. Chem., 28, 271–282,
https://doi.org/10.1002/ijch.198800039, 1988.
Levitt, M. H., Kolbert, A. C., Bielecki, A., and Ruben, D. J.:
High-resolution 1H NMR in solids with frequency-switched multiple-pulse
sequences, Solid State Nucl. Magn. Reson., 2, 151–163,
https://doi.org/10.1016/0926-2040(93)90021-E, 1993.
Lu, X., Lafon, O., Trébosc, J., Thankamony, A. S. L., Nishiyama, Y.,
Gan, Z., Madhu, P. K., and Amoureux, J. P.: Detailed analysis of the TIMES
and TIMES 0 high-resolution MAS methods for high-resolution proton NMR, J.
Magn. Reson., 223, 219–227, https://doi.org/10.1016/j.jmr.2012.07.015, 2012.
Madhu, P. K., Zhao, X., and Levitt, M. H.: High-resolution1H NMR in the solid
state using symmetry-based pulse sequences, Chem. Phys. Lett., 346,
142–148, https://doi.org/10.1016/S0009-2614(01)00876-4, 2001.
Mansfield, P. and Grannell, A. B.: Improved resolution of small resonance
shifts of dilute nuclear spin systems in solids by pulsed double resonance,
J. Phys. C Solid State Phys., 4, 197–200, https://doi.org/10.1088/0022-3719/4/10/005, 1971.
Mehring, M. and Waugh, J. S.: Magic-angle NMR experiments in solids, Phys.
Rev. B, 5, 3459–3471, https://doi.org/10.1103/PhysRevB.5.3459, 1972a.
Mehring, M. and Waugh, J. S.: Phase transients in pulsed NMR spectrometers,
Rev. Sci. Instrum., 43, 649–653, https://doi.org/10.1063/1.1685714, 1972b.
Mote, K. R., Agarwal, V., and Madhu, P. K.: Five decades of homonuclear
dipolar decoupling in solid-state NMR: Status and outlook, Prog. Nucl. Magn.
Reson. Spectrosc., 97, 1–39, https://doi.org/10.1016/j.pnmrs.2016.08.001, 2016.
Nishiyama, Y., Lu, X., Trébosc, J., Lafon, O., Gan, Z., Madhu, P. K., and
Amoureux, J. P.: Practical choice of 1 H- 1 H decoupling schemes in
through-bond 1 H-{X} HMQC experiments at
ultra-fast MAS, J. Magn. Reson., 214, 151–158,
https://doi.org/10.1016/j.jmr.2011.10.014, 2012.
Parker, L. L., Houk, A. R., and Jensen, J. H.: Cooperative hydrogen bonding
effects are key determinants of backbone amide proton chemical shifts in
proteins, J. Am. Chem. Soc., 128, 9863–9872, https://doi.org/10.1021/ja0617901,
2006.
Paruzzo, F. M., Stevanato, G., Halse, M. E., Schlagnitweit, J., Mammoli, D.,
Lesage, A., and Emsley, L.: Refocused linewidths less than 10 Hz in1H
solid-state NMR, J. Magn. Reson., 293, 41–46,
https://doi.org/10.1016/j.jmr.2018.06.001, 2018.
Paul, S., Thakur, R. S., Goswami, M., Sauerwein, A. C., Mamone, S.,
Concistrè, M., Förster, H., Levitt, M. H., and Madhu, P. K.:
Supercycled homonuclear dipolar decoupling sequences in solid-state NMR, J.
Magn. Reson., 197, 14–19, https://doi.org/10.1016/j.jmr.2008.11.011, 2009.
Paul, S., Schneider, D., and Madhu, P. K.: 1H Homonuclear dipolar decoupling
using symmetry-based pulse sequences at ultra fast magic-angle spinning
frequencies, J. Magn. Reson., 206, 241–245,
https://doi.org/10.1016/j.jmr.2010.07.013, 2010.
Penzel, S., Oss, A., Org, M. L., Samoson, A., Böckmann, A., Ernst, M.
and Meier, B. H.: Spinning faster: protein NMR at MAS frequencies up to
126 kHz, J. Biomol. NMR, 73, 19–29, https://doi.org/10.1007/s10858-018-0219-9,
2019.
Rhim, W.-K., Elleman, D. D., and Vaughan, R. W.: Analysis of multiple pulse
NMR in solids, J. Chem. Phys., 59, 3740–3749, https://doi.org/10.1063/1.1680545,
1973.
Rhim, W. -K., Pines, A., and Waugh, J. S.: Time-Reversal Experiments in
Dipolar-Coupled Spin Systems, Phys. Rev. B, 3, 684–696, 1971.
Sakellariou, D., Lesage, A., Hodgkinson, P., and Emsley, L.: Homonuclear
dipolar decoupling in solid-state NMR using continuous phase modulation,
Chem. Phys. Lett., 319, 253–260, https://doi.org/10.1016/S0009-2614(00)00127-5,
2000.
Salager, E., Stein, R. S., Steuernagel, S., Lesage, A., Elena, B., and
Emsley, L.: Enhanced sensitivity in high-resolution 1H solid-state NMR
spectroscopy with DUMBO dipolar decoupling under ultra-fast MAS, Chem. Phys.
Lett., 469, 336–341, https://doi.org/10.1016/j.cplett.2008.12.073, 2009.
Scholz, I., Van Beek, J. D., and Ernst, M.: Operator-based Floquet theory in
solid-state NMR, Solid State Nucl. Magn. Reson., 37, 39–59,
https://doi.org/10.1016/j.ssnmr.2010.04.003, 2010.
Shirley, J. H.: Solution of the schrödinger equation with a Hamiltonian
periodic in time, Phys. Rev., 138, 979–987, https://doi.org/10.1103/PhysRev.138.B979, 1965.
Smith, S. A., Levante, T. O., Meier, B. H., and Ernst, R. R.: Computer
Simulations in Magnetic Resonance, An Object-Oriented Programming Approach,
J. Magn. Reson. Ser. A, 106, 75–105, https://doi.org/10.1006/jmra.1994.1008, 1994.
Stöppler, D., Macpherson, A., Smith-Penzel, S., Basse, N., Lecomte, F.,
Deboves, H., Taylor, R. D., Norman, T., Porter, J., Waters, L. C., Westwood,
M., Cossins, B., Cain, K., White, J., Griffin, R., Prosser, C., Kelm, S.,
Sullivan, A. H., Fox, D., Carr, M. D., Henry, A., Taylor, R., Meier, B. H.,
Oschkinat, H., and Lawson, A. D.: Insight into small molecule binding to the
neonatal Fc receptor by X-ray crystallography and 100 kHz
magic-angle-spinning NMR, PLoS Biol., 16, 1–27,
https://doi.org/10.1371/journal.pbio.2006192, 2018.
Tabuchi, Y., Negoro, M., Takeda, K., and Kitagawa, M.: Total compensation of
pulse transients inside a resonator, J. Magn. Reson., 204, 327–332,
https://doi.org/10.1016/j.jmr.2010.03.014, 2010.
Takeda, K., Tabuchi, Y., Negoro, M., and Kitagawa, M.: Active compensation of
rf-pulse transients, J. Magn. Reson., 197, 242–244,
https://doi.org/10.1016/j.jmr.2008.12.012, 2009.
Tatton, A. S., Frantsuzov, I., Brown, S. P., and Hodgkinson, P.: Unexpected
effects of third-order cross-terms in heteronuclear spin systems under
simultaneous radio-frequency irradiation and magic-angle spinning NMR, J.
Chem. Phys., 136, 084503, https://doi.org/10.1063/1.3684879, 2012.
Tekely, P. and Goldman, M.: Radial-field sidebands in MAS, J. Magn. Reson.,
148, 135–141, https://doi.org/10.1006/jmre.2000.2215, 2001.
Tosner, Z., Sarkar, R., Becker-Baldus, J., Glaubitz, C., Wegner, S.,
Engelke, F., Glaser, S. J., and Reif, B.: Overcoming volume selectivity of
dipolar recoupling in biological solid-state NMR, Angew. Chemie Int. Ed., 2,
14514–14518, https://doi.org/10.1016/0165-1838(81)90062-X, 2018.
Vega, A. J.: Controlling the effects of pulse transients and RF
inhomogeneity in phase-modulated multiple-pulse sequences for homonuclear
decoupling in solid-state proton NMR, J. Magn. Reson., 170, 22–41,
https://doi.org/10.1016/j.jmr.2004.05.017, 2004.
Vinogradov, E., Madhu, P. K. K., and Vega, S.: High-resolution proton
solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment,
Chem. Phys. Lett., 314, 443–450, https://doi.org/10.1016/S0009-2614(99)01174-4,
1999.
Vinogradov, E., Madhu, P. K., and Vega, S.: A bimodal Floquet analysis of
phase modulated Lee-Goldburg high resolution proton magic angle spinning NMR
experiments, Chem. Phys. Lett., 329, 207–214,
https://doi.org/10.1016/S0009-2614(00)01006-X, 2000.
Vinogradov, E., Madhu, P. K., and Vega, S.: Phase modulated Lee-Goldburg
magic angle spinning proton nuclear magnetic resonance experiments in the
solid state: A bimodal Floquet theoretical treatment, J. Chem. Phys.,
115, 8983–9000, https://doi.org/10.1063/1.1408287, 2001.
Vinogradov, E., Madhu, P. K., and Vega, S.: Proton spectroscopy in solid
state nuclear magnetic resonance with windowed phase modulated Lee-Goldburg
decoupling sequences, Chem. Phys. Lett., 354, 193–202,
https://doi.org/10.1016/S0009-2614(02)00060-X, 2002.
Vinogradov, E., Madhu, P. K., and Vega, S.: Strategies for high-resolution
proton spectroscopy in solid-state NMR, Top. Curr. Chem., 246, 33–90,
https://doi.org/10.1007/b98648, 2004.
Waugh, J. S., Huber, L. M., and Haeberlen, U.: Approach to high-resolution
NMR in solids, Phys. Rev. Lett., 20, 180–182,
https://doi.org/10.1103/PhysRevLett.20.180, 1968.
Wittmann, J. J., Takeda, K., Meier, B. H., and Ernst, M.: Compensating pulse
imperfections in solid-state NMR spectroscopy: A key to better
reproducibility and performance, Angew. Chemie – Int. Ed., 54,
12592–12596, https://doi.org/10.1002/anie.201504782, 2015.
Wittmann, J. J., Mertens, V., Takeda, K., Meier, B. H., and Ernst, M.:
Quantification and compensation of the influence of pulse transients on
symmetry-based recoupling sequences, J. Magn. Reson., 263, 7–18,
https://doi.org/10.1016/j.jmr.2015.12.011, 2016.
Short summary
This paper analyzes a commonly used line-narrowing mechanism (homonuclear decoupling) in solid-state NMR and discusses what limits the achievable line width. Based on theoretical considerations, the contribution of different effects to the line width is discussed and a new contributing term is identified. This research allows us to evaluate new ways to improve the line width in such homonuclear decoupled spectra.
This paper analyzes a commonly used line-narrowing mechanism (homonuclear decoupling) in...