Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data
Luis Fábregas Ibáñez
Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Gunnar Jeschke
Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Department of Chemistry, University of Washington, Seattle, WA 98195, USA
Related authors
No articles found.
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024, https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
Short summary
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic resonance (EPR) resonator based on a cylindrical cavity with 3 mm sample access. The design is robust; simple to manufacture and maintain; and, with its elevated Q value, well-suited to sensitive EPR experiments using continuous-wave or low-power pulsed excitation. Thus, we make multi-frequency EPR spectroscopy, a powerful approach to deconvolute overlapping paramagnetic species, more accessible.
Agathe Vanas, Janne Soetbeer, Frauke Diana Breitgoff, Henrik Hintz, Muhammad Sajid, Yevhen Polyhach, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov, and Daniel Klose
Magn. Reson., 4, 1–18, https://doi.org/10.5194/mr-4-1-2023, https://doi.org/10.5194/mr-4-1-2023, 2023
Short summary
Short summary
Nanometre distance measurements between spin labels by pulse EPR techniques yield structural information on the molecular level. Here, backed by experimental data, we derive a description for the total signal of the single-frequency technique for refocusing dipolar couplings (SIFTER), showing how the different spin–spin interactions give rise to dipolar signal and background – the latter has thus far been unknown.
Nino Wili, Jan Henrik Ardenkjær-Larsen, and Gunnar Jeschke
Magn. Reson., 3, 161–168, https://doi.org/10.5194/mr-3-161-2022, https://doi.org/10.5194/mr-3-161-2022, 2022
Short summary
Short summary
Dynamic nuclear polarisation (DNP) transfers polarisation from electron to nuclear spins. This is usually combined with direct detection of the latter. Here, we show that it is possible to reverse the transfer at 1.2 T. This allows us to investigate the spin dynamics of nuclear spins close to electrons – something that is notoriously difficult with established methods. We expect reverse DNP to be useful in the study of spin diffusion or as a building block for more elaborate pulse sequences.
Sarah R. Sweger, Vasyl P. Denysenkov, Lutz Maibaum, Thomas F. Prisner, and Stefan Stoll
Magn. Reson., 3, 101–110, https://doi.org/10.5194/mr-3-101-2022, https://doi.org/10.5194/mr-3-101-2022, 2022
Short summary
Short summary
This work examines the physics underlying double electron–electron resonance (DEER) spectroscopy, a magnetic-resonance method that provides nanoscale data about protein structure and conformations.
Thorsten Bahrenberg, Samuel M. Jahn, Akiva Feintuch, Stefan Stoll, and Daniella Goldfarb
Magn. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021, https://doi.org/10.5194/mr-2-161-2021, 2021
Short summary
Short summary
Double electron–electron resonance (DEER) provides information on the structure of proteins by attaching two spin labels to the protein at a well-defined location and measuring the distance between them. The sensitivity of the method in terms of the amount of the protein that is needed for the experiment depends strongly on the relaxation properties of the spin label and the composition of the solvent. We show how to set up the experiment for best sensitivity when the solvent is water (H2O).
Nino Wili, Henrik Hintz, Agathe Vanas, Adelheid Godt, and Gunnar Jeschke
Magn. Reson., 1, 75–87, https://doi.org/10.5194/mr-1-75-2020, https://doi.org/10.5194/mr-1-75-2020, 2020
Short summary
Short summary
Measuring distances between unpaired electron spins is an important application of electron paramagnetic resonance. The longest distance that is accessible is limited by the phase memory time of the electron spins. Here we show that strong continuous microwave irradiation can significantly slow down relaxation. Additionally, we introduce a phase-modulation scheme that allows measurement of the distance during the irradiation. Our approach could thus significantly extend the accessible distances.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE
T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Baber, J. L., Louis, J. M., and Clore, G. M.: Dependence of Distance
Distributions Derived from Double Electron–Electron Resonance
Pulsed EPR Spectroscopy on Pulse-Sequence Time, Angew. Chem. Int. Edit., 54, 5336–5339, https://doi.org/10.1002/anie.201500640, 2015. a
Banks, H. T., Holm, K., and Robbins, D.: Standard error computations for
uncertainty quantification in inverse problems: Asymptotic theory vs.
bootstrapping, Math. Comput. Model., 52, 1610–1625, https://doi.org/10.1016/j.mcm.2010.06.026,
2010. a
Barth, K., Hank, S., Spindler, P. E., Prisner, T. F., Tampé, R., and Joseph,
B.: Conformational Coupling and trans-Inhibition in the Human Antigen
Transporter Ortholog TmrAB Resolved with Dipolar EPR
Spectroscopy, J. Am. Chem. Soc., 140, 4527–4533, https://doi.org/10.1021/jacs.7b12409, 2018. a
Borbat, P. P. and Freed, J. H.: Dipolar Spectroscopy – Single-Resonance
Methods, in: eMagRes, 465–494, available at:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470034590.emrstm1519, last access: 27 September 2020. a
Bowman, M. K., Maryasov, A. G., Kim, N., and DeRose, V. J.: Visualization of
distance distribution from pulsed double electron–electron resonance data,
Appl. Magn. Reson., 26, 23–39, https://doi.org/10.1007/BF03166560, 2004. a, b
Breitgoff, F. D., Polyhach, Y. O., and Jeschke, G.: Reliable nanometre-range
distance distributions from 5-pulse double electron electron resonance,
Phys. Chem. Chem. Phys., 19, 15754–15765, https://doi.org/10.1039/C7CP01487B,
2017a. a, b, c
Breitgoff, F. D., Soetbeer, J., Doll, A., Jeschke, G., and Polyhach, Y. O.:
Artefact suppression in 5-pulse double electron electron resonance for
distance distribution measurements, Phys. Chem. Chem. Phys., 19, 15766–15779, https://doi.org/10.1039/C7CP01488K,
2017b. a, b
Bro, R. and Jong, S. D.: A fast non-negativity-constrained least squares
algorithm, J. Chemometr., 11, 393–401, https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L,
1997. a
Budil, D. E., Lee, S., Saxena, S., and Freed, J. H.:
Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in
One and Two Dimensions Using a Modified Levenberg–Marquardt
Algorithm, J. Magn. Reson., Series A, 120, 155–189, https://doi.org/10.1006/jmra.1996.0113,
1996. a, b, c
Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach, Springer
Science & Business Media, New York, 2003. a
Chen, D. and Plemmons, R. J.: Nonnegativity constraints in numerical analysis,
in: The Birth of Numerical Analysis, World Sci., 109–139, https://doi.org/10.1142/9789812836267_0008,
2009. a
Chiang, Y.-W., Borbat, P. P., and Freed, J. H.: The determination of pair
distance distributions by pulsed ESR using Tikhonov regularization,
J. Magn. Reson., 172, 279–295, https://doi.org/10.1016/j.jmr.2004.10.012,
2005a. a, b, c
Chiang, Y.-W., Borbat, P. P., and Freed, J. H.: Maximum entropy: A complement
to Tikhonov regularization for determination of pair distance distributions
by pulsed ESR, J. Magn. Reson., 177, 184–196, https://doi.org/10.1016/j.jmr.2005.07.021,
2005b. a
Collauto, A., DeBerg, H. A., Kaufmann, R., Zagotta, W. N., Stoll, S., and
Goldfarb, D.: Rates and equilibrium constants of the ligand-induced
conformational transition of an HCN ion channel protein domain determined
by DEER spectroscopy, Phys. Chem. Chem. Phys., 19, 15324–15334, https://doi.org/10.1039/C7CP01925D,
2017. a
Di Valentin, M., Albertini, M., Zurlo, E., Gobbo, M., and Carbonera, D.:
Porphyrin Triplet State as a Potential Spin Label for Nanometer
Distance Measurements by PELDOR Spectroscopy, J. Am. Chem. Soc., 136, 6582–6585, https://doi.org/10.1021/ja502615n, 2014. a
Doll, A. and Jeschke, G.: Double electron–electron resonance with multiple
non-selective chirp refocusing, Phys. Chem. Chem. Phys.: PCCP, 19, 1039–1053, https://doi.org/10.1039/c6cp07262c, 2017. a, b
Domingo Köhler, S., Spitzbarth, M., Diederichs, K., Exner, T. E., and
Drescher, M.: A short note on the analysis of distance measurements by
electron paramagnetic resonance, J. Magn. Reson., 208, 167–170, https://doi.org/10.1016/j.jmr.2010.10.005,
2011. a
Dzuba, S. A.: The determination of pair-distance distribution by double
electron–electron resonance: regularization by the length of distance
discretization with Monte Carlo calculations, J. Magn. Reson., 269, 113–119, https://doi.org/10.1016/j.jmr.2016.06.001,
2016. a, b
Edwards, T. H. and Stoll, S.: Optimal Tikhonov regularization for DEER
spectroscopy, J. Magn. Reson., 288, 58–68, https://doi.org/10.1016/j.jmr.2018.01.021,
2018. a, b, c
Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors,
Confidence Intervals, and Other Measures of Statistical Accuracy,
Stat. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986. a
Fábregas Ibáñez, L. and Jeschke, G.: General regularization framework for
DEER spectroscopy, J. Magn. Reson., 300, 28–40, https://doi.org/10.1016/j.jmr.2019.01.008,
2019. a, b, c, d
Fábregas Ibáñez, L. and Jeschke, G.: Optimal background treatment in dipolar
spectroscopy, Phys. Chem. Chem. Phys., 22, 1855–1868, https://doi.org/10.1039/C9CP06111H,
2020. a, b, c
Fábregas Ibáñez, L., Jeschke, G., and Stoll, S.: DeerLab v0.11.0 (Version v0.11.0), Zenodo, https://doi.org/10.5281/zenodo.4058605, 2020.
Fitzkee, N. C. and Rose, G. D.: Reassessing random-coil statistics in unfolded
proteins, P. Nat. A. Sci., 101, 12497–12502, https://doi.org/10.1073/pnas.0404236101, 2004. a
Freedman, D. A.: A Note on Screening Regression Equations, Am. Stat., 37, 152–155, https://doi.org/10.2307/2685877, 1983. a
Golub, G. and Pereyra, V.: Separable nonlinear least squares: the variable
projection method and its applications, Inverse Probl., 19, R1–R26, https://doi.org/10.1088/0266-5611/19/2/201, 2003. a
Golub, G. H., Heath, M., and Wahba, G.: Generalized Cross-Validation as a
Method for Choosing a Good Ridge Parameter, Technometrics, 21,
215–223, https://doi.org/10.1080/00401706.1979.10489751,
1979. a
Hansen, P. C.: The L-curve and its use in the numerical treatment of inverse
problems, in: Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Adv. Comp. Bioeng., WIT Press, 119–142, 2000. a
Hansen, P. C., Pereyra, V., and Scherer, G.: Least Squares Data Fitting
with Applications, Johns Hopkins University Press, available at:
https://muse.jhu.edu/book/21076, last access: 27 September 2020. a
Hintze, C., Bücker, D., Domingo Köhler, S., Jeschke, G., and Drescher, M.:
Laser-Induced Magnetic Dipole Spectroscopy, J. Phys. Chem. Lett., 7, 2204–2209, https://doi.org/10.1021/acs.jpclett.6b00765, 2016. a
Hogben, H. J., Krzystyniak, M., Charnock, G. T. P., Hore, P. J., and Kuprov,
I.: Spinach – A software library for simulation of spin dynamics in large
spin systems, J. Magn. Reson., 208, 179–194, https://doi.org/10.1016/j.jmr.2010.11.008,
2011. a
Hurvich, C. M. and Tsai, C.-L.: Regression and time series model selection in
small samples, Biometrika, 76, 297–307, https://doi.org/10.1093/biomet/76.2.297,
1989. a
Hustedt, E. J., Marinelli, F., Stein, R. A., Faraldo-Gómez, J. D., and
Mchaourab, H. S.: Confidence Analysis of DEER Data and Its
Structural Interpretation with Ensemble-Biased Metadynamics,
Biophys. J., 115, 1200–1216, https://doi.org/10.1016/j.bpj.2018.08.008, 2018. a, b, c, d
Ionita, P., Volkov, A., Jeschke, G., and Chechik, V.: Lateral Diffusion of
Thiol Ligands on the Surface of Au Nanoparticles: An
Electron Paramagnetic Resonance Study, Anal. Chem., 80, 95–106, https://doi.org/10.1021/ac071266s, 2008. a
Jagessar, K. L., Claxton, D. P., Stein, R. A., and Mchaourab, H. S.: Sequence
and structural determinants of ligand-dependent alternating access of a
MATE transporter, P. Natl. A. Sci., 117, 4732–4740, https://doi.org/10.1073/pnas.1917139117, 2020. a
Jeschke, G.: DEER Distance Measurements on Proteins, Annu. Rev. Phys. Chem., 63, 419–446,
https://doi.org/10.1146/annurev-physchem-032511-143716,
2012. a, b
Jeschke, G.: Dipolar Spectroscopy – Double-Resonance Methods, in:
eMagRes, 1459–1476, https://doi.org/10.1002/9780470034590.emrstm1518,
2016. a
Jeschke, G.: MMM: A toolbox for integrative structure modeling, Protein
Sci., 27, 76–85, https://doi.org/10.1002/pro.3269, 2018. a
Jeschke, G., Pannier, M., Godt, A., and Spiess, H. W.: Dipolar spectroscopy and
spin alignment in electron paramagnetic resonance, Chem. Phys. Lett., 331, 243–252, https://doi.org/10.1016/S0009-2614(00)01171-4,
2000. a
Jeschke, G., Koch, A., Jonas, U., and Godt, A.: Direct Conversion of EPR
Dipolar Time Evolution Data to Distance Distributions, J. Magn. Reson., 155, 72–82, https://doi.org/10.1006/jmre.2001.2498,
2002. a, b
Jeschke, G., Panek, G., Godt, A., Bender, A., and Paulsen, H.: Data analysis
procedures for pulse ELDOR measurements of broad distance distributions,
Appl. Magn. Reson., 26, 223–244, https://doi.org/10.1007/BF03166574, 2004. a, b
Kasper, v. W., Scales, J. A., William, N., and Luis, T.: Data and model
uncertainty estimation for linear inversion, Geophys. J. Int., 149, 625–632, https://doi.org/10.1046/j.1365-246X.2002.01660.x, 2002. a
Kattnig, D. R. and Hinderberger, D.: Analytical distance distributions in
systems of spherical symmetry with applications to double electron–electron
resonance, J. Magn. Reson., 230, 50–63, https://doi.org/10.1016/j.jmr.2013.01.007,
2013. a
Kattnig, D. R., Reichenwallner, J., and Hinderberger, D.: Modeling Excluded
Volume Effects for the Faithful Description of the Background
Signal in Double Electron–Electron Resonance, J. Phys. Chem. B, 117, 16542–16557, https://doi.org/10.1021/jp408338q, 2013. a, b
Keller, K., Mertens, V., Qi, M., Nalepa, A. I., Godt, A., Savitsky, A.,
Jeschke, G., and Yulikov, M.: Computing distance distributions from dipolar
evolution data with overtones: RIDME spectroscopy with Gd(III)-based
spin labels, Phys. Chem. Chem. Phys., 19, 17856–17876, https://doi.org/10.1039/C7CP01524K,
2017. a
Kulik, L. V., Dzuba, S. A., Grigoryev, I. A., and Tsvetkov, Y. D.: Electron
dipole–dipole interaction in ESEEM of nitroxide biradicals, Chem. Phys. Lett., 343, 315–324, https://doi.org/10.1016/S0009-2614(01)00721-7,
2001. a
Kutsovsky, Y. E., Mariasov, A. G., Aristov, Y. I., and Parmon, V. N.: Electron
spin echo as a tool for investigation of surface structure of finely
dispersed fractal solids, React. Kinet. Catal. L., 42, 19–24, https://doi.org/10.1007/BF02137612, 1990. a, b
Lawson, C. L. and Hanson, R. J.: Solving Least Squares Problems, vol. 18,
SIAM, Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1974. a
Lukacs, P. M., Burnham, K. P., and Anderson, D. R.: Model selection bias and
Freedman’s paradox, Ann. I. Stat. Math., 62, 117, https://doi.org/10.1007/s10463-009-0234-4, 2009. a
Martens, C., Stein, R. A., Masureel, M., Roth, A., Mishra, S., Dawaliby, R.,
Konijnenberg, A., Sobott, F., Govaerts, C., and Mchaourab, H. S.: Lipids
modulate the conformational dynamics of a secondary multidrug transporter,
Nat. Struct. Mol. Biol., 23, 744–751, https://doi.org/10.1038/nsmb.3262, 2016. a
Matveeva, A. G., Nekrasov, V. M., and Maryasov, A. G.: Analytical solution of
the PELDOR inverse problem using the integral Mellin transform, Phys. Chem. Chem. Phys., 19, 32381–32388, https://doi.org/10.1039/C7CP04059H,
2017. a
Milikisiyants, S., Voinov, M. A., and Smirnov, A. I.: Refocused
Out-Of-Phase (ROOPh) DEER: A pulse scheme for suppressing an
unmodulated background in double electron-electron resonance experiments,
J. Magn. Reson., 293, 9–18, https://doi.org/10.1016/j.jmr.2018.05.007, 2018. a, b
Milikisyants, S., Scarpelli, F., Finiguerra, M. G., Ubbink, M., and Huber, M.:
A pulsed EPR method to determine distances between paramagnetic centers
with strong spectral anisotropy and radicals: The dead-time free RIDME
sequence, J. Magn. Reson., 201, 48–56, https://doi.org/10.1016/j.jmr.2009.08.008,
2009. a
Milov, A. D., Ponomarev, A. B., and Tsvetkov, Y. D.: Electron-electron double
resonance in electron spin echo: Model biradical systems and the sensitized
photolysis of decalin, Chem. Phys. Lett., 110, 67–72, https://doi.org/10.1016/0009-2614(84)80148-7,
1984. a
Milov, A. D., Maryasov, A. G., and Tsvetkov, Y. D.: Pulsed electron double
resonance (PELDOR) and its applications in free-radicals research, Appl. Magn. Reson., 15, 107–143, https://doi.org/10.1007/BF03161886, 1998. a
Nickerson, R. S.: Confirmation Bias: A Ubiquitous Phenomenon in Many
Guises, Rev. Gen. Psychol., 2, 175–220, https://doi.org/10.1037/1089-2680.2.2.175, 1998. a
Pannier, M., Schädler, V., Schöps, M., Wiesner, U., Jeschke, G., and Spiess,
H. W.: Determination of Ion Cluster Sizes and Cluster-to-Cluster
Distances in Ionomers by Four-Pulse Double Electron Electron
Resonance Spectroscopy, Macromolecules, 33, 7812–7818,
https://doi.org/10.1021/ma000800u,
2000a. a, b, c
Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W.: Dead-Time
Free Measurement of Dipole–Dipole Interactions between Electron
Spins, J. Magn. Reson., 142, 331–340, https://doi.org/10.1006/jmre.1999.1944,
2000b. a
Pribitzer, S., Sajid, M., Hülsmann, M., Godt, A., and Jeschke, G.: Pulsed
triple electron resonance (TRIER) for dipolar correlation spectroscopy,
J. Magn. Reson., 282, 119–128, https://doi.org/10.1016/j.jmr.2017.07.012,
2017. a
Razzaghi, S., Qi, M., Nalepa, A. I., Godt, A., Jeschke, G., Savitsky, A., and
Yulikov, M.: RIDME Spectroscopy with Gd(III) Centers, J. Phys. Chem. Lett., 5, 3970–3975, https://doi.org/10.1021/jz502129t, 2014. a
Rein, S., Lewe, P., Andrade, S. L., Kacprzak, S., and Weber, S.: Global
analysis of complex PELDOR time traces, J. Magn. Reson., 295, 17–26, https://doi.org/10.1016/j.jmr.2018.07.015,
2018. a, b
Salikhov, K. M., Dzuba, S. A., and Raitsimring, A. M.: The theory of electron
spin–echo signal decay resulting from dipole–dipole interactions between
paramagnetic centers in solids, J. Magn. Reson., 42, 255–276, https://doi.org/10.1016/0022-2364(81)90216-X,
1981. a
Saxena, S. and Freed, J. H.: Double quantum two-dimensional Fourier transform
electron spin resonance: Distance measurements, Chem. Phys. Lett., 251, 102–110, https://doi.org/10.1016/0009-2614(96)00075-9,
1996. a
Saxena, S. and Freed, J. H.: Theory of double quantum two-dimensional electron
spin resonance with application to distance measurements, J. Chem. Phys., 107, 1317–1340, https://doi.org/10.1063/1.474490, 1997. a
Schwarz, G.: Estimating the Dimension of a Model, Ann. Stat., 6, 461–464, https://doi.org/10.1214/aos/1176344136, 1978. a
Sen, K. I., Logan, T. M., and Fajer, P. G.: Protein Dynamics and
Monomer–Monomer Interactions in AntR Activation by Electron
Paramagnetic Resonance and Double Electron–Electron Resonance,
Biochemistry, 46, 11639–11649, https://doi.org/10.1021/bi700859p, 2007. a, b, c, d
Sima, D. M. and Van Huffel, S.: Separable nonlinear least squares fitting with
linear bound constraints and its application in magnetic resonance
spectroscopy data quantification, J. Comput. Appl. Math., 203, 264–278, https://doi.org/10.1016/j.cam.2006.03.025,
2007. a
Spindler, P. E., Waclawska, I., Endeward, B., Plackmeyer, J., Ziegler, C., and
Prisner, T. F.: Carr–Purcell Pulsed Electron Double Resonance
with Shaped Inversion Pulses, J. Phys. Chem. Lett., 6, 4331–4335, https://doi.org/10.1021/acs.jpclett.5b01933, 2015. a, b, c
Srivastava, M. and Freed, J. H.: Singular Value Decomposition Method to
Determine Distance Distributions in Pulsed Dipolar Electron
Spin Resonance, J. Phys. Chem. Lett., 8, 5648–5655, https://doi.org/10.1021/acs.jpclett.7b02379, 2017.
a
Stein, R. A., Beth, A. H., and Hustedt, E. J.: Chapter Twenty – A
Straightforward Approach to the Analysis of Double
Electron–Electron Resonance Data, in: Methods in Enzymology,
edited by Qin, P. Z. and Warncke, K., vol. 563 of Electron
Paramagnetic Resonance Investigations of Biological Systems by
Using Spin Labels, Spin Probes, and Intrinsic Metal Ions,
Part A, 531–567, Academic Press, https://doi.org/10.1016/bs.mie.2015.07.031,
2015. a, b, c, d, e, f, g, h
Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for
spectral simulation and analysis in EPR, J. Magn. Reson., 178, 42–55, https://doi.org/10.1016/j.jmr.2005.08.013,
2006. a
Sugiura, N.: Further analysis of the data by Akaike' s information criterion
and the finite corrections, Commun. Stat.-Theor. M., 7, 13–26, https://doi.org/10.1080/03610927808827599, 1978. a
Sweger, S. R., Pribitzer, S., and Stoll, S.: Bayesian Probabilistic
Analysis of DEER Spectroscopy Data Using Parametric Distance
Distribution Models, J. Phys. Chem. A, 124, 6193–6202, https://doi.org/10.1021/acs.jpca.0c05026, 2020. a, b
Teucher, M. and Bordignon, E.: Improved signal fidelity in 4-pulse DEER with
Gaussian pulses, J. Magn. Reson., 296, 103–111, https://doi.org/10.1016/j.jmr.2018.09.003,
2018. a, b
Tikhonov, A. N.: Solution of incorrectly formulated problems and the
regularization method, Soviet Math. Dokl., 4, 1035–1038, 1963. a
Timofeev, I. O., Krumkacheva, O. A., Fedin, M. V., Karpova, G. G., and
Bagryanskaya, E. G.: Refining Spin–Spin Distance Distributions in
Complex Biological Systems Using Multi-Gaussian Monte Carlo
Analysis, Appl. Magn. Reson., 49, 265–276, https://doi.org/10.1007/s00723-017-0965-y, 2018. a, b
Wang, H.: Confidence intervals for the mean of a normal distribution with
restricted parameter space, J. Stat. Comput. Sim., 78, 829–841, https://doi.org/10.1080/00949650701273902,
2008. a
Weese, J.: A reliable and fast method for the solution of Fredhol integral
equations of the first kind based on Tikhonov regularization, Comput. Phys. Commun., 69, 99–111, https://doi.org/10.1016/0010-4655(92)90132-I, 1992. a
Wilhelm, J. and Frey, E.: Radial Distribution Function of Semiflexible
Polymers, Phys. Rev. Lett., 77, 2581–2584, https://doi.org/10.1103/PhysRevLett.77.2581, 1996. a
Worswick, S. G., Spencer, J. A., Jeschke, G., and Kuprov, I.: Deep neural
network processing of DEER data, Science Advances, 4, eaat5218,
https://doi.org/10.1126/sciadv.aat5218, 2018. a
Short summary
Dipolar electron paramagnetic resonance spectroscopy methods such as DEER provide data on how proteins change shape, thus giving detailed insight into how proteins work. We present DeerLab, a comprehensive open-source software for reliably analyzing the associated data. The software implements a series of theoretical and algorithmic innovations and thereby improves the quality and reproducibility of data analysis.
Dipolar electron paramagnetic resonance spectroscopy methods such as DEER provide data on how...