Articles | Volume 1, issue 2
Magn. Reson., 1, 261–274, 2020
https://doi.org/10.5194/mr-1-261-2020

Special issue: Robert Kaptein Festschrift

Magn. Reson., 1, 261–274, 2020
https://doi.org/10.5194/mr-1-261-2020

Research article 13 Nov 2020

Research article | 13 Nov 2020

Analysis of the electronic structure of the primary electron donor of photosystem I of Spirodela oligorrhiza by photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state nuclear magnetic resonance (NMR)

Geertje J. Janssen et al.

Related authors

Towards resolving the complex paramagnetic nuclear magnetic resonance (NMR) spectrum of small laccase: assignments of resonances to residue-specific nuclei
Rubin Dasgupta, Karthick B. S. S. Gupta, Huub J. M. de Groot, and Marcellus Ubbink
Magn. Reson., 2, 15–23, https://doi.org/10.5194/mr-2-15-2021,https://doi.org/10.5194/mr-2-15-2021, 2021
Short summary

Cited articles

Amsterdam density functional program: https://www.scm.com/, last access: 1 September 2020. 
Alia, Roy, E., Gast, P., van Gorkom, H. J., de Groot, H. J. M., Jeschke, G., and Matysik, J.: Photochemically induced dynamic nuclear polarization in photosystem I of plants observed by 13C magic-angle spinning NMR, J. Am. Chem. Soc., 126, 12819–12826, https://doi.org/10.1021/ja048051+, 2004. 
Amunts, A. and Nelson, N.: Plant photosystem I design in the light of evolution, Structure, 17, 637–650, https://doi.org/10.1016/j.str.2009.03.006, 2009. 
Amunts, A., Drory, O., and Nelson, N.: The structure of a plant photosystem I supercomplex at 3.4 Å resolution, Nature, 447, 58–63, https://doi.org/10.1038/nature05687, 2007. 
Amunts, A., Toporik, H., Borovikova, A., and Nelson, N.: Structure determination and improved model of plant photosystem I, J. Biol. Chem, 285, 3478–3486, https://doi.org/10.1074/jbc.M109.072645, 2010. 
Download
Short summary
Natural photosynthetic reaction centers (RCs) are built up by two parallel branches of cofactors. While photosystem II and purple bacterial RCs selectively use one branch for light-driven electron transfer, photosystem I, as also shown here, is using both branches. Comparing NMR chemical shifts, we shown that the two donor cofactors in photosystem I are similarly distinguished to those in purple bacterial RCs (Schulten et al., 2002; Biochemistry 41, 8708). Alternative reasons are discussed.