Articles | Volume 1, issue 2
Magn. Reson., 1, 261–274, 2020

Special issue: Robert Kaptein Festschrift

Magn. Reson., 1, 261–274, 2020

Research article 13 Nov 2020

Research article | 13 Nov 2020

Analysis of the electronic structure of the primary electron donor of photosystem I of Spirodela oligorrhiza by photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state nuclear magnetic resonance (NMR)

Geertje J. Janssen et al.

Related authors

Towards resolving the complex paramagnetic nuclear magnetic resonance (NMR) spectrum of small laccase: assignments of resonances to residue-specific nuclei
Rubin Dasgupta, Karthick B. S. S. Gupta, Huub J. M. de Groot, and Marcellus Ubbink
Magn. Reson., 2, 15–23,,, 2021
Short summary

Cited articles

Amsterdam density functional program:, last access: 1 September 2020. 
Alia, Roy, E., Gast, P., van Gorkom, H. J., de Groot, H. J. M., Jeschke, G., and Matysik, J.: Photochemically induced dynamic nuclear polarization in photosystem I of plants observed by 13C magic-angle spinning NMR, J. Am. Chem. Soc., 126, 12819–12826,, 2004. 
Amunts, A. and Nelson, N.: Plant photosystem I design in the light of evolution, Structure, 17, 637–650,, 2009. 
Amunts, A., Drory, O., and Nelson, N.: The structure of a plant photosystem I supercomplex at 3.4 Å resolution, Nature, 447, 58–63,, 2007. 
Amunts, A., Toporik, H., Borovikova, A., and Nelson, N.: Structure determination and improved model of plant photosystem I, J. Biol. Chem, 285, 3478–3486,, 2010. 
Short summary
Natural photosynthetic reaction centers (RCs) are built up by two parallel branches of cofactors. While photosystem II and purple bacterial RCs selectively use one branch for light-driven electron transfer, photosystem I, as also shown here, is using both branches. Comparing NMR chemical shifts, we shown that the two donor cofactors in photosystem I are similarly distinguished to those in purple bacterial RCs (Schulten et al., 2002; Biochemistry 41, 8708). Alternative reasons are discussed.