Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-1-261-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of the electronic structure of the primary electron donor of photosystem I of Spirodela oligorrhiza by photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state nuclear magnetic resonance (NMR)
Geertje J. Janssen
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
Patrick Eschenbach
Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
Patrick Kurle
Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
Bela E. Bode
EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, KY16 9ST St Andrews, Scotland
Johannes Neugebauer
Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
Huub J. M. de Groot
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
Jörg Matysik
CORRESPONDING AUTHOR
Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
Alia Alia
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
Institut für Medizinische Physik und Biophysik, Universität
Leipzig, 04103 Leipzig, Germany
Related authors
No articles found.
Corinna Dietrich, Julia Wissel, Oliver Lorenz, Arafat Hossain Khan, Marko Bertmer, Somayeh Khazaei, Daniel Sebastiani, and Jörg Matysik
Magn. Reson., 2, 751–763, https://doi.org/10.5194/mr-2-751-2021, https://doi.org/10.5194/mr-2-751-2021, 2021
Short summary
Short summary
Quantum-rotor-induced polarization, also called the Haupt effect, is a hyperpolarization technique in NMR relying on the coupling of nuclear spin states to rotational quantum states. The classic molecule showing this effect is γ-picoline. One might assume that many other molecules carrying a methyl group might also show this effect. Here we explore, using a heuristic approach, other molecules which appear to be promising candidates.
Rolf Boelens, Konstantin Ivanov, and Jörg Matysik
Magn. Reson., 2, 465–474, https://doi.org/10.5194/mr-2-465-2021, https://doi.org/10.5194/mr-2-465-2021, 2021
Short summary
Short summary
This publication presents research in biomolecular NMR, spin hyperpolarisation and spin chemistry. Robert Kaptein made key contributions to magnetic resonance and proposed the radical pair mechanism for chemically induced dynamic nuclear polarisation (CIDNP). He developed laser CIDNP and computational methods for protein structure determination. He is known for studying the lac repressor and its DNA complexes. He played a leading role in establishing the NMR large-scale facilities in Europe.
Rubin Dasgupta, Karthick B. S. S. Gupta, Huub J. M. de Groot, and Marcellus Ubbink
Magn. Reson., 2, 15–23, https://doi.org/10.5194/mr-2-15-2021, https://doi.org/10.5194/mr-2-15-2021, 2021
Short summary
Short summary
A method is demonstrated that can help in sequence-specific NMR signal assignment to nuclear spins near a strongly paramagnetic metal in an enzyme. A combination of paramagnetically tailored NMR experiments and second-shell mutagenesis was used to attribute previously observed chemical exchange processes in the active site of laccase to specific histidine ligands. The signals of nuclei close to the metal can be used as spies to unravel the role of motions in the catalytic process.
Related subject area
Field: Solid-state NMR | Topic: (Bio)Chemistry
Deuteration of proteins boosted by cell lysates: high-resolution amide and Hα magic-angle-spinning (MAS) NMR without the reprotonation bottleneck
Federico Napoli, Jia-Ying Guan, Charles-Adrien Arnaud, Pavel Macek, Hugo Fraga, Cécile Breyton, and Paul Schanda
Magn. Reson., 5, 33–49, https://doi.org/10.5194/mr-5-33-2024, https://doi.org/10.5194/mr-5-33-2024, 2024
Short summary
Short summary
Protons (1H) are useful reporters of protein structure and dynamics in solid-state NMR. However, 1H abundance is detrimental to the resolution of NMR spectra. Substituting 1H by deuterons has been an efficient strategy to improve spectral quality, but when the crucial backbone amide sites are not protonated, much information is loss. We propose a method to completely protonate the amide sites, while maintaining high-resolution information, which partially also extends to backbone alpha-1H.
Cited articles
Amsterdam density functional program: https://www.scm.com/, last access: 1 September 2020.
Alia, Roy, E., Gast, P., van Gorkom, H. J., de Groot, H. J. M., Jeschke, G., and Matysik, J.: Photochemically induced dynamic nuclear polarization in
photosystem I of plants observed by 13C magic-angle spinning NMR, J. Am. Chem. Soc., 126, 12819–12826, https://doi.org/10.1021/ja048051+, 2004.
Amunts, A. and Nelson, N.: Plant photosystem I design in the light of
evolution, Structure, 17, 637–650, https://doi.org/10.1016/j.str.2009.03.006, 2009.
Amunts, A., Drory, O., and Nelson, N.: The structure of a plant photosystem
I supercomplex at 3.4 Å resolution, Nature, 447, 58–63,
https://doi.org/10.1038/nature05687, 2007.
Amunts, A., Toporik, H., Borovikova, A., and Nelson, N.: Structure
determination and improved model of plant photosystem I, J. Biol. Chem, 285,
3478–3486, https://doi.org/10.1074/jbc.M109.072645, 2010.
Artiukhin, D. G., Eschenbach, P., and Neugebauer, J.: Computational
investigation of the spin-density asymmetry in photosynthetic reaction
center models from first principles, J. Phys. Chem. B, 124, 4873–4888,
https://doi.org/10.1021/acs.jpcb.0c02827, 2020.
Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., and Griffin, R.
G.: Heteronuclear decoupling in rotating solids, J. Chem. Phys., 103,
6951–6958, https://doi.org/10.1063/1.470372, 1995.
Ben-Shem, A., Frolow, F., and Nelson, N.: Crystal structure of plant
photosystem I, Nature, 426, 630–635, https://doi.org/10.1038/nature02200, 2003.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig,
H., Shindyalov, I. N., and Bourne, P. E.: The protein data bank, Nucleic
Acids Res., 28, 235–242, https://doi.org/10.1093/nar/28.1.235, 2000.
Berthold, T., von Gromoff, E. D., Santabarbara, S., Stehle, P., Link, G., Poluektov, O. G., Heathcote, P., Beck, C. F., Thurnauer, M. C., and Kothe,
G.: Exploring the Electron Transfer Pathways in Photosystem I by High-Time-Resolution Electron Paramagnetic Resonance: Observation of the B-Side Radical Pair P A in Whole Cells of the Deuterated Green Alga Chlamydomonas reinhardtii at Cryogenic Temperatures, J. Am. Chem. Soc., 134, 5563–5576, https://doi.org/10.1021/ja208806g, 2012.
Bode, B. E., Thamarath, S. S., Sai Sankar Gupta, K. B., Alia, A., Jeschke,
G., and Matysik, J.: The solid-state photo-CIDNP effect and its analytical
application, in: Hyperpolarization methods in NMR spectroscopy, edited
by: Kuhn, L., Springer Berlin-Heidelberg, 105–121, 2013.
Boender, G. J., Raap, J., Prytulla, S., Oschkinat, H., and de Groot, H.: MAS
NMR structure refinement of uniformly 13C enriched chlorophyll a/water
aggregates with 2D dipolar correlation spectroscopy, Chem. Phys.
Lett., 237, 502–508, https://doi.org/10.1016/0009-2614(95)00357-A, 1995.
Boxer, S. G., Closs, G. L., and Katz, J. J.: Effect of magnesium
coordination on the carbon-13 and nitrogen-15 magnetic resonance spectra of
chlorophyll a. Relative energies of nitrogen n-pi* states as deduced from a complete assignment of chemical shifts, J. Am. Chem. Soc., 96, 7058–7066,
https://doi.org/10.1021/ja00829a038, 1974.
Breton, J., Nabedryk, E., and Leibl, W.: FT-IR study of the primary electron
donor of photosystem I (P700) revealing delocalization of the charge in
P700+ and localization of the triplet character in 3P700,
Biochemistry-US, 38, 11585–11592, https://doi.org/10.1021/bi991216k, 1999.
Closs, G. L. and Closs, L. E.: Induced dynamic nuclear spin polarization in
reactions of photochemically and thermally generated triplet
diphenylmethylene, J. Am. Chem. Soc., 91, 4549–4550,
https://doi.org/10.1021/ja01044a041, 1969.
Croce, R., Chojnicka, A., Morosinotto, T., Ihalainen, J. A., van Mourik, F.,
Dekker, J. P., Bassi, R., and van Grondelle, R.: The low-energy forms of
photosystem I light-harvesting complexes: spectroscopic properties and
pigment-pigment interaction characteristics, Biophys. J., 93, 2418–2428,
https://doi.org/10.1529/biophysj.107.106955, 2007.
Dashdorj, N., Zhang, H., Kim, H., Yan, J., Cramer, W. A., and Savikhin, S.:
The single chlorophyll a molecule in the cytochrome b6f complex: unusual
optical properties protect the complex against singlet oxygen, Biophys. J.,
88, 4178–4187, https://doi.org/10.1529/biophysj.104.058693, 2005.
Davis, I. H., Heathcote, P., MacLachlan, D. J., and Evans, M. C.: Modulation
analysis of the electron spin echo signals of in vivo oxidised primary donor
14N chlorophyll centres in bacterial, P870 and P960, and plant
Photosystem I, P700, reaction centres, BBA-Bioenergetics, 1143, 183–189,
https://doi.org/10.1016/0005-2728(93)90141-2, 1993.
Daviso, E., Alia, A., Prakash, S., Diller, A., Gast, P., Lugtenburg, J.,
Matysik, J., and Jeschke, G.: Electron−nuclear spin dynamics in a
bacterial photosynthetic reaction center, J. Phys. Chem. C, 113,
10269–10278, https://doi.org/10.1021/jp900286q, 2009a.
Daviso, E., Prakash, S., Alia, A., Gast, P., Neugebauer, J., Jeschke, G.,
and Matysik, J.: The electronic structure of the primary electron donor of
reaction centers of purple bacteria at atomic resolution as observed by
photo-CIDNP 13C NMR, P. Natl. Acad. Sci. USA, 106, 22281–22286,
https://doi.org/10.1073/pnas.0908608106, 2009b.
Daviso, E., Prakash, S., Alia, A., Gast, P., Jeschke, G., and Matysik, J.:
Nanosecond-flash 15N Photo-CIDNP MAS NMR on reaction centers of
Rhodobacter sphaeroides R26, Appl. Magn. Reson., 37, 49–63,
https://doi.org/10.1007/s00723-009-0050-2, 2010.
Daviso, E., Janssen, G. J., Alia, A., Jeschke, G., Matysik, J., and Tessari,
M.: A 10,000-fold nuclear hyperpolarization of a membrane protein in the
liquid phase via a solid-state mechanism, J. Am. Chem. Soc., 133,
16754–16757, https://doi.org/10.1021/ja206689t, 2011.
Diller, A., Alia, Gast, P., van Gorkom, H. J., Zaanen, J., de Groot, H. J.
M., Glaubitz, C., and Matysik, J.: The electronic structure of the primary
donor of photosystem II investigated by photo-CIDNP ssNMR, in:
Photosynthesis: Fundamental Aspects to Global Perspectives, Proceedings of
the 13th International Congress on Photosynthesis, Montreal, Canada, 29 August to 3 September 2004, edited by: van der Est,
A. and Bruce, D., Allen Press, 307–308, 2005.
Diller, A., Roy, E., Gast, P., van Gorkom, H. J., de Groot, H. J. M.,
Glaubitz, C., Jeschke, G., Matysik, J., and Alia, A.: 15N
photochemically induced dynamic nuclear polarization magic-angle spinning
NMR analysis of the electron donor of photosystem II, Proc. Natl. Acad. Sci.
USA, 104, 12767–12771, https://doi.org/10.1073/pnas.0701763104, 2007.
Ding, Y., Kiryutin, A. S., Yurkovskaya, A. V., Sosnovsky, D. V., Sagdeev, R.
Z., Bannister, S., Kottke, T., Kar, R. K., Schapiro, I., Ivanov, K. L., and
Matysik, J.: Nuclear spin-hyperpolarization generated in a flavoprotein
under illumination: experimental field-dependence and theoretical level
crossing analysis, Sci. Rep.-UK, 9, 18436, https://doi.org/10.1038/s41598-019-54671-4,
2019.
Emerson, R. and Chalmers, R. V.: Speculations concerning the function and
phylogenetic significance of the assessory pigments in algae, Phycol. Soc.
Amer. News Bull., 11, 51–56, 1958.
Fairclough, W. V., Forsyth, A., Evans, M. C., Rigby, S. E., Purton, S., and
Heathcote, P.: Bidirectional electron transfer in photosystem I: Electron
transfer on the PsaA side is not essential for phototrophic growth in
Chlamydomonas, BBA-Bioenergetics, 1606, 43–55,
https://doi.org/10.1016/S0005-2728(03)00083-5, 2003.
Fromme, P., Jordan, P., and Krauß, N.: Structure of photosystem I,
BBA-Bioenergetics, 1507, 5–31, https://doi.org/10.1016/S0005-2728(01)00195-5, 2001.
Gaus, M., Cui, Q., and Elstner, M.: DFTB3: Extension of the
self-consistent-charge density-functional tight-binding method (SCC-DFTB),
J. Chem. Theory Comput., 7, 931–948, https://doi.org/10.1021/ct100684s, 2012.
Gaus, M., Goez, A., and Elstner, M.: Parametrization and benchmark of DFTB3
for organic molecules, J. Chem. Theory Comput., 9, 338–354,
https://doi.org/10.1021/ct300849w, 2013.
Govindjee and Rabinowitch, E.: Two forms of chlorophyll a in vivo with
distinct photochemical functions, Science, 132, 355–356,
https://doi.org/10.1126/science.132.3423.355, 1960.
Gräsing, D., Bielytskyi, P., Céspedes-Camacho, I. F., Alia, A.,
Marquardsen, T., Engelke, F., and Matysik, J.: Field-cycling NMR with
high-resolution detection under magic-angle spinning: determination of
field-window for nuclear hyperpolarization in a photosynthetic reaction
center, Sci. Rep.-UK, 7, 12111, https://doi.org/10.1038/s41598-017-10413-y, 2017.
Holzwarth, A. R., Müller, M. G., Niklas, J., and Lubitz, W.: Ultrafast
transient absorption studies on photosystem I reaction centers from
Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center
chlorophylls provide new insight into the nature of the primary electron
donor, Biophys. J., 90, 552–565, https://doi.org/10.1529/biophysj.105.059824, 2006.
Ishikita, H., Biesiadka, J., Loll, B., Saenger, W., and Knapp, E.-W.:
Cationic state of accessory chlorophyll and electron transfer through
pheophytin to plastoquinone in photosystem II, Angew. Chem. Int. Ed., 118,
1998–1999, https://doi.org/10.1002/ange.200503804, 2006.
Jacob, C. R. and Visscher, L.: Calculation of nuclear magnetic resonance
shieldings using frozen-density embedding, J. Chem. Phys., 125, 194104,
https://doi.org/10.1063/1.2370947, 2006.
Janssen, G. J., Daviso, E., van Son, M., de Groot, H. J. M., Alia, A., and
Matysik, J.: Observation of the solid-state photo-CIDNP effect in entire
cells of cyanobacteria Synechocystis, Photosynth. Res., 104, 275–282,
https://doi.org/10.1007/s11120-009-9508-1, 2010.
Janssen, G. J., Roy, E., Matysik, J., and Alia, A.: 15N Photo-CIDNP MAS NMR to reveal functional heterogeneity in electron donor of different plant organisms, Appl. Magn. Reson., 42, 57–67, https://doi.org/10.1007/s00723-011-0283-8, 2012.
Janssen, G. J., Bielytskyi, P., Artiukhin, D. G., Neugebauer, J., de Groot,
H. J. M., Matysik, J., and Alia, A.: Photochemically induced dynamic nuclear
polarization NMR on photosystem II: donor cofactor observed in entire plant,
Sci. Rep.-UK, 8, 17853, https://doi.org/10.1038/s41598-018-36074-z, 2018.
Jeschke, G.: Electron–electron–nuclear three-spin mixing in
spin-correlated radical pairs, J. Chem. Phys., 106, 10072–10086,
https://doi.org/10.1063/1.474063, 1997.
Jeschke, G. and Matysik, J.: A reassessment of the origin of photochemically
induced dynamic nuclear polarization effects in solids, Chem. Phys., 294,
239–255, https://doi.org/10.1016/S0301-0104(03)00278-7, 2003.
Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss,
N.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å
resolution, Nature, 411, 909–917, https://doi.org/10.1038/35082000, 2001.
Kaptein, R. and Oosterhoff, J. L.: Chemically induced dynamic nuclear
polarization II, Chem. Phys. Lett., 4, 195–197,
https://doi.org/10.1016/0009-2614(69)80098-9, 1969.
Käss, H., Fromme, P., Witt, H. T., and Lubitz, W.: Orientation and
electronic structure of the primary donor radical cation in photosystem I: A
single crystals EPR and ENDOR study, J. Phys. Chem. B, 105, 1225–1239,
https://doi.org/10.1021/jp0032311, 2001.
Kouril, R., van Oosterwijk, N., Yakushevska, A. E., and Boekema, E. J.:
Photosystem I: a search for green plant trimers, Photochem. Photobiol. Sci.,
4, 1091–1094, https://doi.org/10.1039/B505519A, 2005.
Kruip, J., Bald, D., Boekema, E., and Rögner, M.: Evidence for the
existence of trimeric and monomeric Photosystem I complexes in thylakoid
membranes from cyanobacteria, Photosynth. Res., 40, 279–286,
https://doi.org/10.1007/BF00034777, 1994.
Kubillus, M., Kubař, T., Gaus, M., Řezáč, J., and Elstner,
M.: Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in
organic and biological systems, J. Chem. Theory Comput., 11, 332–342,
https://doi.org/10.1021/ct5009137, 2015.
Lee, H., Lee, C., and Parr, R. G.: Conjoint gradient correction to the
Hartree-Fock kinetic- and exchange-energy density functionals, Phys. Rev. A,
44, 768–771, https://doi.org/10.1103/PhysRevA.44.768, 1991.
Lembarki, A. and Chermette, C.: Obtaining a gradient-corrected
kinetic-energy functional from the Perdew-Wang exchange functional, Phys.
Rev. A, 50, 5328–5331, https://doi.org/10.1103/PhysRevA.50.5328, 1994.
Li, Y., van der Est, A., Lucas, M. G., Ramesh, V. M., Gu, F., Petrenko, A.,
Lin, S., Webber, A. N., Rappaport, F., and Redding, K.: Directing electron
transfer within Photosystem I by breaking H-bonds in the cofactor branches,
P. Natl. Acad. Sci. USA, 103, 2144–2149, https://doi.org/10.1073/pnas.0506537103,
2006.
Matysik, J., Alia, Gast, P., van Gorkom, H. J., Hoff, A. J., and de Groot, H.
J.: Photochemically induced nuclear spin polarization in reaction centers
of photosystem II observed by 13C-solid-state NMR reveals a strongly
asymmetric electronic structure of the P680(.+) primary donor chlorophyll,
P. Natl. Acad. Sci. USA, 97, 9865–9870, https://doi.org/10.1073/pnas.170138797,
2000a.
Matysik, J., Alia, Hollander, J. G., Egorova-Zachernyuk, T., Gast, P., and
de Groot, H. J. M.: Sample illumination and photo-CIDNP in a magic-angle
spinning NMR probe, Indian J. Biochem. Bio., 37, 418–423, 2000b.
Matysik, J., Diller, A., Roy, E., and Alia: The solid-state photo-CIDNP
effect, Photosynth. Res., 102, 427–435, https://doi.org/10.1007/s11120-009-9403-9,
2009.
McDermott, A., Zysmilich, M. G., and Polenova, T.: Solid state NMR studies
of photoinduced polarization in photosynthetic reaction centers: Mechanism
and simulations, Solid State Nucl. Mag., 11, 21–47,
https://doi.org/10.1016/s0926-2040(97)00094-5, 1998.
Moran, R. and Porath, D.: Chlorophyll determination in intact tissues using
n,n-dimethylformamide, Plant Physiol., 65, 478–479,
https://doi.org/10.1104/pp.65.3.478, 1980.
Müh, F., Glöckner, C., Hellmich, J., and Zouni, A.: Light-induced
quinone reduction in photosystem II, Biochim. Biophys. Ac., 1817, 44–65,
https://doi.org/10.1016/j.bbabio.2011.05.021, 2012.
Müller, M. G., Slavov, C., Luthra, R., Redding, K. E., and Holzwarth, A.
R.: Independent initiation of primary electron transfer in the two branches
of the photosystem I reaction center, P. Natl. Acad. Sci. USA, 107,
4123–4128, https://doi.org/10.1073/pnas.0905407107, 2010.
Mullet, J. E., Burke, J. J., and Arntzen, C. J.: Chlorophyll proteins of
photosystem I, Plant Physiol., 65, 814–822, https://doi.org/10.1104/pp.65.5.814, 1980.
Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R., and Shuvalov, V.
A.: Coherent nuclear and electronic dynamics in primary charge separation in
photosynthetic reaction centers: A Redfield Theory approach, J. Phys. Chem.
B, 108, 7445–7457, https://doi.org/10.1021/jp0373346, 2004.
Paul, S., Roy, U., Böckers, M., Neugebauer, J., Alia, A., and Matysik,
J.: 15N photo-CIDNP MAS NMR analysis of a bacterial photosynthetic
reaction center of Rhodobacter sphaeroides wildtype, J. Chem. Phys., 151,
195101, https://doi.org/10.1063/1.5128783, 2019.
Perdew, J. P. and Wang, Y.: Electronic structure of solids'91, Akademie,
Berlin, 1991.
Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M.
R., Singh, D. J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation for exchange and
correlation, Phys. Rev. B, 46, 6671–6687, https://doi.org/10.1103/PhysRevB.46.6671,
1992.
Polenova, T. and McDermott, A. E.: A coherent mixing mechanism explains the
photoinduced nuclear polarization in photosynthetic reaction centers, J.
Phys. Chem. B, 103, 535–548, https://doi.org/10.1021/jp9822642, 1999.
Polm, M. and Brettel, K.: Secondary pair charge recombination in photosystem
I under strongly reducing conditions: Temperature dependence and suggested
mechanism, Biophys. J., 74, 3173–3181, https://doi.org/10.1016/S0006-3495(98)78023-3,
1998.
Poluektov, O. G., Paschenko, S. V., Utschig, L. M., Lakshmi, K. V., and
Thurnauer, M. C.: Bidirectional electron transfer in photosystem I: direct
evidence from high-frequency time-resolved EPR spectroscopy, J. Am. Chem.
Soc., 127, 11910–11911, https://doi.org/10.1021/ja053315t, 2005.
Prakash, S., Alia, Gast, P., de Groot, H. J. M., Jeschke, G., and Matysik, J.: Magnetic field dependence of photo-CIDNP MAS NMR on photosynthetic reaction centers of Rhodobacter sphaeroides WT, J. Am. Chem. Soc., 127, 14290–14298, https://doi.org/10.1021/ja054015e, 2005.
Prakash, S., Alia, Gast, P., de Groot, H. J. M., Jeschke, G., and Matysik, J.: 13C chemical shift map of the active cofactors in photosynthetic reaction centers of Rhodobacter sphaeroides revealed by photo-CIDNP MAS NMR, Biochemistry, 46, 8953–8960, 2007.
Ramesh, V. M., Gibasiewicz, K., Lin, S., Bingham, S. E., and Webber, A. N.:
Bidirectional electron transfer in photosystem I: accumulation of A0- in
A-side or B-side mutants of the axial ligand to chlorophyll A0,
Biochemistry, 43, 1369–1375, https://doi.org/10.1021/bi0354177, 2004.
Redding, K. E., Luthra, R., Slavov, C., Müller, M., Bullock, B.,
Holzwarth, A. R., and Rappaport, F.: Directionality of electron transfer
within photosystem I, in: 14th International Congress of Photosynthesis, 22–27 July 2007, Glasgow, UK, Photosynth. Res., 91, p. 139, 2007.
Roy, E., Diller, A., Alia, Gast, P., van Gorkom, H. J., de Groot, Huub J M,
Jeschke, G., and Matysik, J.: Magnetic field dependence of 13C
photo-CIDNP MAS NMR in plant photosystems I and II, Appl. Magn. Reson., 31,
193–204, 2007.
Roy, E., Alia, A., Gast, P., van Gorkom, H. J., Jeschke, G., and Matysik,
J.: 13C photo-CIDNP MAS NMR on the reaction center of the green sulphur
bacterium at two different magnetic fields, in: Energy from the sun, edited
by: Allen, J., Gantt, E., Golbeck, J., and Osmond, B., Springer, Dordrecht,
173–176, 2008.
Sai Sankar Gupta, K. B., Daviso, E., Jeschke, G., Alia, A., Ernst, M., and
Matysik, J.: Spectral editing through laser-flash excitation in
two-dimensional photo-CIDNP MAS NMR experiments, J. Magn. Reson., 246, 9–17,
https://doi.org/10.1016/j.jmr.2014.06.007, 2014.
Saito, K., Shen, J.-R., Ishida, T., and Ishikita, H.: Short hydrogen bond
between redox-active tyrosine Y(Z) and D1-His190 in the photosystem II
crystal structure, Biochemistry, 50, 9836–9844, https://doi.org/10.1021/bi201366j,
2011.
Santabarbara, S., Galuppini, L., and Casazza, A. P.: Bidirectional electron
transfer in the reaction centre of photosystem I, J. Integr. Plant. Biol.,
52, 735–749, https://doi.org/10.1111/j.1744-7909.2010.00977.x, 2010.
Scheller, H. V., Jensen, P. E., Haldrup, A., Lunde, C., and Knoetzel, J.:
Role of subunits in eukaryotic Photosystem I, Biochim. Biophys. Ac., 1507,
41–60, https://doi.org/10.1016/s0005-2728(01)00196-7, 2001.
Schmid, V. H., Cammarata, K. V., Bruns, B. U., and Schmidt, G. W.: In vitro
reconstitution of the photosystem I light-harvesting complex LHCI-730:
heterodimerization is required for antenna pigment organization, P. Natl.
Acad. Sci. USA, 94, 7667–7672, https://doi.org/10.1073/pnas.94.14.7667, 1997.
Schulten, E. A. M., Matysik, J., Alia, Kiihne, S., Raap, J., Lugtenburg, J.,
Gast, P., Hoff, A. J., and de Groot, H. J. M.: 13C MAS NMR and
photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of
the special pair of Rhodobacter sphaeroides reaction centers, Biochemistry,
41, 8708–8717, https://doi.org/10.1021/bi025608u, 2002.
Sosnovsky, D. V., Jeschke, G., Matysik, J., Vieth, H.-M., and Ivanov, K. L.:
Level crossing analysis of chemically induced dynamic nuclear polarization:
Towards a common description of liquid-state and solid-state cases, J. Chem.
Phys., 144, 144202, https://doi.org/10.1063/1.4945341, 2016.
Sosnovsky, D. V., Lukzen, N. N., Vieth, H.-M., Jeschke, G., Gräsing, D.,
Bielytskyi, P., Matysik, J., and Ivanov, K. L.: Magnetic field and
orientation dependence of solid-state CIDNP, J. Chem. Phys., 150, 94105,
https://doi.org/10.1063/1.5077078, 2019.
Srinivasan, N. and Golbeck, J. H.: Protein-cofactor interactions in
bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I, Biochim. Biophys. Ac., 1787, 1057–1088,
https://doi.org/10.1016/j.bbabio.2009.04.010, 2009.
Thamarath, S. S., Heberle, J., Hore, P. J., Kottke, T., and Matysik, J.:
Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C
magic-angle spinning NMR spectroscopy, J. Am. Chem. Soc., 132, 15542–15543,
https://doi.org/10.1021/ja1082969, 2010.
Thamarath, S. S., Bode, B. E., Prakash, S., Sai Sankar Gupta, Karthick Babu,
Alia, A., Jeschke, G., and Matysik, J.: Electron spin density distribution
in the special pair triplet of Rhodobacter sphaeroides R26 revealed by
magnetic field dependence of the solid-state photo-CIDNP effect, J. Am.
Chem. Soc., 134, 5921–5930, https://doi.org/10.1021/ja2117377, 2012a.
Thamarath, S. S., Alia, A., Daviso, E., Mance, D., Golbeck, J. H., and
Matysik, J.: Whole cell nuclear magnetic resonance characterization of two
photochemically active states of the photosynthetic reaction center in
heliobacteria, Biochemistry, 51, 5763–5773, https://doi.org/10.1021/bi300468y, 2012b.
van Lenthe, E. and Baerends, E. J.: Optimized Slater-type basis sets for the
elements 1-118, J. Comput. Chem., 24, 1142–1156, https://doi.org/10.1002/jcc.10255,
2003.
Velde, G. T., Bickelhaupt, F. M., Baerends, E. J., Fonseca Guerra, C., van
Gisbergen, S. J. A., Snijders, J. G., and Ziegler, T.: Chemistry with ADF,
J. Comput. Chem., 22, 931–967, 2001.
Watanabe, T., Kobayashi, M., Hongu, A., Nakazato, M., Hiyama, T., and
Murata, N.: Evidence that a chlorophyll a' dimer constitutes the
photochemical reaction centre 1 (P700) in photosynthetic apparatus, FEBS
Lett., 191, 252–256, https://doi.org/10.1016/0014-5793(85)80019-3, 1985.
Wawrzyniak, P. K., Beerepoot, M. T. P., de Groot, H. J. M., and Buda, F.:
Acetyl group orientation modulates the electronic ground-state asymmetry of
the special pair in purple bacterial reaction centers, Phys. Chem. Chem.
Phys., 13, 10270–10279, https://doi.org/10.1039/C1CP20213H, 2011.
Webber, A. N. and Lubitz, W.: P700: The primary electron donor of
photosystem I, BBA-Bioenergetics, 1507, 61–79,
https://doi.org/10.1016/S0005-2728(01)00198-0, 2001.
Wientjes, E., Oostergetel, G. T., Jansson, S., Boekema, E. J., and Croce,
R.: The role of Lhca complexes in the supramolecular organization of higher
plant photosystem I, J. Biol. Chem., 284, 7803–7810,
https://doi.org/10.1074/jbc.M808395200, 2009.
Zill, J. C., Kansy, M., Goss, R., Köhler, L., Alia, A., Wilhelm, C., and
Matysik, J.: Photo-CIDNP in the reaction center of the diatom Cyclotella meneghiniana observed by 13C MAS NMR, Z. Phys.
Chem., 231, 13288, https://doi.org/10.1515/zpch-2016-0806, 2017.
Zill, J. C., Kansy, M., Goss, R., Alia, A., Wilhelm, C., and Matysik, J.:
15N photo-CIDNP MAS NMR on both photosystems and magnetic
field-dependent 13C photo-CIDNP MAS NMR in photosystem II of the diatom
Phaeodactylum tricornutum, Photosynth. Res., 140, 151–171,
https://doi.org/10.1007/s11120-018-0578-9, 2019.
Zysmilich, M. G. and McDermott, A.: Photochemically induced dynamic nuclear
polarization in the solid-state 15N spectra of reaction centers from
photosynthetic bacteria Rhodobacter sphaeroides R-26, J. Am. Chem. Soc.,
116, 8362–8363, https://doi.org/10.1021/ja00097a052, 1994.
Short summary
Natural photosynthetic reaction centers (RCs) are built up by two parallel branches of cofactors. While photosystem II and purple bacterial RCs selectively use one branch for light-driven electron transfer, photosystem I, as also shown here, is using both branches. Comparing NMR chemical shifts, we shown that the two donor cofactors in photosystem I are similarly distinguished to those in purple bacterial RCs (Schulten et al., 2002; Biochemistry 41, 8708). Alternative reasons are discussed.
Natural photosynthetic reaction centers (RCs) are built up by two parallel branches of...
Special issue