Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-275-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-1-275-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry–Pérot type microwave resonator
Alexey Fedotov
Institute of Applied Physics of the Russian Academy of Sciences,
Nizhny Novgorod, 603950, Russia
Ilya Kurakin
Institute of Applied Physics of the Russian Academy of Sciences,
Nizhny Novgorod, 603950, Russia
Sebastian Fischer
Institute of Diagnostic and Interventional Radiology, University
Hospital Frankfurt, Frankfurt am Main 60590, Germany
Thomas Vogl
Institute of Diagnostic and Interventional Radiology, University
Hospital Frankfurt, Frankfurt am Main 60590, Germany
Thomas F. Prisner
CORRESPONDING AUTHOR
Institute of Physical and Theoretical Chemistry and Center of
Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main 60438, Germany
Vasyl Denysenkov
CORRESPONDING AUTHOR
Institute of Physical and Theoretical Chemistry and Center of
Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main 60438, Germany
Related authors
No articles found.
Paul A. S. Trenkler, Burkhard Endeward, Snorri T. Sigurdsson, and Thomas F. Prisner
Magn. Reson., 6, 281–315, https://doi.org/10.5194/mr-6-281-2025, https://doi.org/10.5194/mr-6-281-2025, 2025
Short summary
Short summary
Pulsed electron paramagnetic resonance can measure distances and orientation between two paramagnetic markers. If they are rigidly attached to a biomolecule, advanced insights into the structure and dynamics of the biomolecule follow. We used chirp pulses to perform real two-dimensional experiments with much shorter experimental time compared to experiments with monochromatic microwave pulses. We also present new pulse sequences and give a detailed protocol for setting up such experiments.
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023, https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
Short summary
We recently liberated the solid effect of dynamic nuclear polarization (DNP) from its perturbative treatment by describing the relevant spin dynamics in a time domain. This allows us to easily account for dynamical processes that modulate the spin interactions in liquids, like the translational diffusion of spins. Here we additionally model the slow rotational diffusion of the polarizing agent and analyze DNP data from nitroxide spin labels in lipid bilayers at 9.4 T.
Sarah R. Sweger, Vasyl P. Denysenkov, Lutz Maibaum, Thomas F. Prisner, and Stefan Stoll
Magn. Reson., 3, 101–110, https://doi.org/10.5194/mr-3-101-2022, https://doi.org/10.5194/mr-3-101-2022, 2022
Short summary
Short summary
This work examines the physics underlying double electron–electron resonance (DEER) spectroscopy, a magnetic-resonance method that provides nanoscale data about protein structure and conformations.
Cited articles
Albert, M. S. and Balamore, D.: Development of hyperpolarized noble gas
MRI, Nucl. Instrum. Methods, A402, 441–453,
https://doi.org/10.1016/S0168-9002(97)00888-7, 1998.
Andryieuski, A., Kuznetsova, S. M., Zhukovsky, S. V., Kivshar, Y. S., and
Lavrinenko, A. V.: Water: promising opportunities for tunable all-dielectric
electromagnetic metamaterials, Sci. Rep., 5, 13535,
https://doi.org/10.1038/srep13535, 2015.
Ardenkjaer-Larsen, J. H., Laustsen, C., Bowen, S., and Rizi, R.:
Hyperpolarized H2O angiography, Magn. Reson. Med., 71, 50–56,
https://doi.org/10.1002/mrm.25033, 2014.
Barnes, J. P. and Freed, J. H.: Aqueous sample holders for high-frequency
electron spin resonance, Rev. Sci. Instrum., 68, 2838–2846,
https://doi.org/10.1063/1.1148205, 1997.
Belousov, V., Denisov, G., and Chirkov, A.: Calculation and
parameter-control methods of eigenmodes of the simplest two-mirror
resonators, Izv. Vuzov, Radiophys., 8, 738–746,
https://doi.org/10.1023/A:1004869622320, 2000.
Blok, H., Disselhorst, J., Orlinskii, S. B., and Schmidt, J.: A
continuous-wave and pulsed electron spin resonance spectrometer operating at
275 GHz, J. Magn. Reson., 166, 92–99, https://doi.org/10.1016/j.jmr.2003.10.011,
2004.
Bornet, A. and Jannin, S.: Optimizing dissolution dynamic nuclear
polarization, J. Magn. Reson., 264, 13–21,
https://doi.org/10.1016/j.jmr.2015.12.007, 2016.
Budil, D. E. and Earle, K. A.: Sample resonators for quasioptical EPR, in:
Very High Frequency ESR/EPR, edited by: Grinberg, O. Y. and Berliner, L. J., Springer, Boston, USA, 2004.
Cavallari, E., Carrera, C., Sorge, M., Bonne, G., Muchir, A., Aime, S., and
Reineri, F.: The 13C hyperpolarized pyruvate generated by ParaHydrogen
detects the response of the heart to altered metabolism in real time, Sci.
Rep. 8, 8366, https://doi.org/10.1038/s41598-018-26583-2, 2018.
Denysenkov, V. and Prisner, T. F.: Liquid state dynamic nuclear polarization
probe with Fabry-Perot resonator at 9.2 T, J. Magn. Reson., 217, 1–5,
https://doi.org/10.1016/j.jmr.2012.01.014, 2012.
Denysenkov, V., Terekhov, M., Maeder, R., Fischer, S., Zangos, S., Vogl, T.,
and Prisner, T.: Continuous-flow DNP polarizer for MRI applications at 1.5 T, Sci. Rep. 7, 44010, https://doi.org/10.1038/srep44010, 2017.
Duckett, S. B. and Mewis, R. E.: Application of parahydrogen induced
polarization techniques in NMR spectroscopy and imaging, Accounts Chem. Res., 45, 1247–1257, https://doi.org/10.1021/ar2003094, 2012.
Dumez, J., Vuichoud, B., Mammoli, D., Bornet, A., Pinon, A., Stevanato, G.,
Meier, B., Bodenhausen, G., Jannin, S., and Levitt, M.: Dynamic Nuclear
Polarization of Long-Lived Nuclear Spin States in Methyl Groups, J. Phys.
Chem. Lett., 8, 3549–3555, https://doi.org/10.1021/acs.jpclett.7b01512, 2017.
Ellison, W. J., Lamkaouchi, K., and Moreau, J. M.: Water: a dielectric
reference, J. Mol. Liq., 68, 171–279, https://doi.org/10.1016/0167-7322(96)00926-9,
1996.
Foster, M. A., Seimenis, I., and Lurie, D. J.: The application of PEDRI to
the study of free radicals in vivo, Phys. Med. Biol., 43, 1893–1897,
https://doi.org/10.1088/0031-9155/43/7/010, 1998.
Fox, A. G. and Li, T.: Resonant modes in a maser interferometer, Bell Labs
Tech. J., 40, 453–488, https://doi.org/10.1002/j.1538-7305.1961.tb01625.x, 1961.
Gajan, D., Bornet, A., Vuichoud, B., Milani, J., Melzi, R., van Kalkeren,
H. A., Veyre, L., Thieuleux, C., Conley, M., Grüning, W.,
Schwarzwälder, M., Lesage, A., Copéret, C., Bodenhausen, G.,
Emsley, L., and Jannin, S.: Hybrid polarizing solids for pure hyperpolarized
liquids through dissolution dynamic nuclear polarization, P. Natl. Acad.
Sci. USA, 111, 14693–14697, https://doi.org/10.1073/pnas.1407730111, 2014.
Golman, K., Axelsson, O., Johannesson, H., Mansson, S., Olofsson, C., and
Petersson, J. S.: Parahydrogen-induced polarization in imaging: Subsecond
C-13 angiography, Magn. Reson. Med., 46, 1–5, https://doi.org/10.1002/mrm.1152,
2001.
Guiberteau, T. and Grucker, D.: Dynamic nuclear polarization imaging in very
low magnetic fields as a noninvasive technique for oximetry, J. Magn.
Reson., 124, 263–266, https://doi.org/10.1006/jmre.1996.1055, 1997.
Jannin, S., Dumez, J.-N., Giraudeau, P., and Kurzbach, D.: Application and
methodology of dissolution dynamic nuclear polarization in physical,
chemical and biological contexts, J. Magn. Reson., 305, 41–50,
https://doi.org/10.1016/j.jmr.2019.06.001, 2019.
Krishna, M., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam,
N., Cook, J. A., Golman, K., Ardenkjaer-Larsen, J. H., Subramanian, S., and
Mitchell, J. B.: Overhauser enhanced magnetic resonance imaging for tumor
oximetry: Co-registration of tumor anatomy and tissue oxygen concentration,
P. Natl. Acad. Sci. USA, 99, 2216–2221,
https://doi.org/10.1073/pnas.042671399, 2002.
Krummenacker, J., Denysenkov, V., Terekhov, M., Schreiber, L., and Prisner,
T. F.: DNP in MRI: An in-bore approach at 1.5 T, J. Magn. Reson., 215,
94–99, https://doi.org/10.1016/j.jmr.2011.12.015, 2012.
Kuo, P. H., Kanal, E., Abu-Alfa, A. K., and Cowper, S. E.: Gadolinium-based
MR contrast agents and nephrogenic systemic fibrosis, Radiology, 242, 647–649, https://doi.org/10.1148/radiol.2423061640, 2007.
Lilburn, D., Pavlovskaya, G., and Meersmann, T.: Perspectives of
hyperpolarized noble gas MRI beyond 3He, J. Magn. Reson. 229, 173–186,
https://doi.org/10.1016/j.jmr.2012.11.014, 2013.
Lingwood, M. D., Siaw, T. A., Sailasuta, N., Abulseoud, O. A., Chan, H. R.,
Ross, B. D., Bhattacharya, P., and Han, S.: Hyperpolarized water as an MR
imaging contrast agent: feasibility of in vivo imaging in a rat model,
Radiology, 265, 418–425, https://doi.org/10.1148/radiol.12111804, 2012.
Lynch, W. B., Earle, K. A., and Freed, J. H.: 1-mm wave ESR spectrometer,
Rev. Sci. Instrum., 59, 1345–1351, https://doi.org/10.1063/1.1139720, 1988.
McCarney, E. R. and Han, S.: Spin-labeled gel for the production of
radical-free dynamic nuclear polarization enhanced molecules for NMR
spectroscopy and imaging, J. Magn. Reson. 190, 307–315,
https://doi.org/10.1016/j.jmr.2007.11.013, 2008.
Mett, R., Sidabras, J., Anderson, J., Klug, C., and Hyde, J.: Rutile
dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous
samples, J. Magn. Reson., 307, 106585, https://doi.org/10.1016/j.jmr.2019.106585,
2019.
Mieville, P., Ahuja, P., Sarkar, R., Jannin, S., Vasos, P. R.,
Gerber-Lemaire, S., Mishkovsky, M., Comment, A., Gruetter, R., Ouari, O., Tordo, P., and Bodenhausen, G.: Scavenging Free Radicals To Preserve
Enhancement and Extend Relaxation Times in NMR using Dynamic Nuclear Polarization, Angew. Chem., 122, 6318–6321,
https://doi.org/10.1002/ange.201000934, 2010.
Milikisiyants, S., Nevzorov, A. A., and Smirnov, A. I.: Photonic band-gap
resonators for high-field/high-frequency EPR of microliter-volume liquid
aqueous samples, J. Magn. Reson., 296, 152–164,
https://doi.org/10.1016/j.jmr.2018.09.006, 2018.
Mishkovsky, M., Comment, A., and Gruetter, R.: In-vivo detection of brain
Krebs cycle intermediate by hyperpolarized magnetic resonance, J. Cerebr.
Blood F. Met., 32, 2108–2113, https://doi.org/10.1038/jcbfm.2012.136,
2012.
Neugebauer, P. and Barra, A.-L.: New cavity design for broad-band
quasi-optical HF-EPR spectroscopy, Appl. Magn. Reson., 37, 833–843,
https://doi.org/10.1007/s00723-009-0092-5, 2010.
Neumann, M.: The dielectric constant of water – computer simulations with
the MCY potential, J. Chem. Phys., 82, 5663–5672, https://doi.org/10.1063/1.448553,
1985.
Olsson, L. E., Chai, C.-M., Axelsson, O., Karlsson, M., Golman, K., and
Petersson, J. S.: MR coronary angiography in pigs with intraarterial
injections of a hyperpolarized 13C substance, Magn. Reson. Med., 55,
731–737, https://doi.org/10.1002/mrm.20847, 2006.
Perazella, M. A.: Current status of gadolinium toxicity in patients with
kidney disease, Clin. J. Am. Soc. Nephrol., 4, 461–469,
https://doi.org/10.2215/CJN.06011108, 2009.
Pileio, G., Concistre, M., Carravetta, M., and Levitt, M.: Long-lived
nuclear spin states in the solution NMR of four-spin systems, J. Magn.
Reson., 182, 353–357, https://doi.org/10.1016/j.jmr.2006.06.034, 2006.
Poole Jr., C. P.: Electron Spin Resonance: A Comprehensive Treatise on
Experimental Techniques, Wiley, New York, USA, 1967.
Prisner, T. F., Un, S., and Griffin, R. G.: Pulsed ESR at 140 GHz, Isr. J.
Chem., 32, 357–363, https://doi.org/10.1002/IJCH.199200042, 1992.
Rinard, G. A. and Eaton, G. R.: Loop-Gap Resonators, in: Biological Magnetic Resonance, edited by: Berliner, L. J., v. 24, Wiley, New York, USA, 2005.
Salerno, M., Altes, T. A., Mugler, J. P., Nakatsu, M., Hatabu, H., and de
Lange, E. E.: Hyperpolarized noble gas MR imaging of the lung: potential
clinical applications, Eur. J. Radiol., 40, 33–44,
https://doi.org/10.1016/S0720-048X(01)00347-3, 2001.
Semelka, R. C., Ramalho, M., Al Obaidy, M., and Ramalho, J.: Gadolinium in
Humans: A Family of Disorders, Am. J. Roentgenol., 207, 229–233,
https://doi.org/10.2214/AJR.15.15842, 2016.
Smirnov, A. I. and Smirnova, T. I.: Resolving domains of interdigitated
phospholipid membranes with 95 GHz spin labeling EPR, Appl. Magn. Reson.,
21, 453–467, https://doi.org/10.1007/BF03162420, 2001.
Thomsen, H. S.: Is NSF only the tip of the “gadolinium toxicity” iceberg?,
J. Magn. Reson. Imag., 28, 284–286, https://doi.org/10.1002/jmri.21478, 2008.
Topcuoglu, E., Topcuoglu, M., Oysu, M., and Bukte, M.: Does gadoterate
meglumine cause gadolinium retention in the brain of children? A
case–control study, J. Magn. Reson. Imag., 51, 1471–1477,
https://doi.org/10.1002/jmri.26954, 2020.
van Tol, J., Brunel, L.-C., and Wylde, R. J.: A quasioptical transient
electron spin resonance spectrometer operating at 120 and 240 GHz, Rev. Sci.
Instrum., 76, 074101, https://doi.org/10.1063/1.1942533, 2005.
Westbrook, K., Caut-Roth, K., and Talbot, J.: MRI in practice,
Wiley-Blackwell, Chichester, UK, 2011.
Short summary
The sensitivity of magnetic resonance imaging can be increased by coupling of the less sensitive nuclear spins which are excited at radio frequencies to unpaired electron spins of radicals which are excited at microwave frequencies. Here we demonstrate how a Fabry–Perot-type microwave resonance structure can be used to significantly enhance the polarization transfer from electron to water proton nuclear spins under constant flow conditions for imaging applications at 1.5 T.
The sensitivity of magnetic resonance imaging can be increased by coupling of the less sensitive...
Special issue