Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-275-2020
https://doi.org/10.5194/mr-1-275-2020
Research article
 | 
18 Nov 2020
Research article |  | 18 Nov 2020

Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry–Pérot type microwave resonator

Alexey Fedotov, Ilya Kurakin, Sebastian Fischer, Thomas Vogl, Thomas F. Prisner, and Vasyl Denysenkov

Related authors

The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
The effect of spin polarization on double electron–electron resonance (DEER) spectroscopy
Sarah R. Sweger, Vasyl P. Denysenkov, Lutz Maibaum, Thomas F. Prisner, and Stefan Stoll
Magn. Reson., 3, 101–110, https://doi.org/10.5194/mr-3-101-2022,https://doi.org/10.5194/mr-3-101-2022, 2022
Short summary

Related subject area

Field: Hyperpolarization | Topic: Instrumentation
Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles
Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst
Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022,https://doi.org/10.5194/mr-3-203-2022, 2022
Short summary
A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution
Karel Kouřil, Michel Gramberg, Michael Jurkutat, Hana Kouřilová, and Benno Meier
Magn. Reson., 2, 815–825, https://doi.org/10.5194/mr-2-815-2021,https://doi.org/10.5194/mr-2-815-2021, 2021
Short summary
A novel sample handling system for dissolution dynamic nuclear polarization experiments
Thomas Kress, Kateryna Che, Ludovica M. Epasto, Fanny Kozak, Mattia Negroni, Gregory L. Olsen, Albina Selimovic, and Dennis Kurzbach
Magn. Reson., 2, 387–394, https://doi.org/10.5194/mr-2-387-2021,https://doi.org/10.5194/mr-2-387-2021, 2021
Short summary

Cited articles

Albert, M. S. and Balamore, D.: Development of hyperpolarized noble gas MRI, Nucl. Instrum. Methods, A402, 441–453, https://doi.org/10.1016/S0168-9002(97)00888-7, 1998. 
Andryieuski, A., Kuznetsova, S. M., Zhukovsky, S. V., Kivshar, Y. S., and Lavrinenko, A. V.: Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials, Sci. Rep., 5, 13535, https://doi.org/10.1038/srep13535, 2015. 
Ardenkjaer-Larsen, J. H., Laustsen, C., Bowen, S., and Rizi, R.: Hyperpolarized H2O angiography, Magn. Reson. Med., 71, 50–56, https://doi.org/10.1002/mrm.25033, 2014. 
Barnes, J. P. and Freed, J. H.: Aqueous sample holders for high-frequency electron spin resonance, Rev. Sci. Instrum., 68, 2838–2846, https://doi.org/10.1063/1.1148205, 1997. 
Belousov, V., Denisov, G., and Chirkov, A.: Calculation and parameter-control methods of eigenmodes of the simplest two-mirror resonators, Izv. Vuzov, Radiophys., 8, 738–746, https://doi.org/10.1023/A:1004869622320, 2000. 
Download
Short summary
The sensitivity of magnetic resonance imaging can be increased by coupling of the less sensitive nuclear spins which are excited at radio frequencies to unpaired electron spins of radicals which are excited at microwave frequencies. Here we demonstrate how a Fabry–Perot-type microwave resonance structure can be used to significantly enhance the polarization transfer from electron to water proton nuclear spins under constant flow conditions for imaging applications at 1.5 T.