Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy
Ulric B. le Paige
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
ShengQi Xiang
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
current address: MOE Key Lab for Membrane-less Organelles &
Cellular Dynamics, School of Life Sciences, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
Marco M. R. M. Hendrix
Laboratory of Self-Organizing Soft Matter, Department of Chemical
Engineering and Chemistry & Institute for Complex Molecular Systems,
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the
Netherlands
Yi Zhang
Department of Pharmacology, University of Colorado School of
Medicine, Aurora, CO 80045, USA
Gert E. Folkers
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
Markus Weingarth
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
Alexandre M. J. J. Bonvin
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
Tatiana G. Kutateladze
Department of Pharmacology, University of Colorado School of
Medicine, Aurora, CO 80045, USA
Ilja K. Voets
Laboratory of Self-Organizing Soft Matter, Department of Chemical
Engineering and Chemistry & Institute for Complex Molecular Systems,
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the
Netherlands
Marc Baldus
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
Hugo van Ingen
CORRESPONDING AUTHOR
Utrecht NMR Group, Bijvoet Centre for Biomolecular Research,
Utrecht University, 3584 CH, Utrecht, the Netherlands
Related subject area
Field: Solid-state NMR | Topic: Applications – biological macromolecules
Evaluating the motional timescales contributing to averaged anisotropic interactions in MAS solid-state NMR
Relaxation-induced dipolar exchange with recoupling (RIDER) distortions in CODEX experiments
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024, https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Short summary
To characterize the amplitude of dynamic processes in molecules, anisotropic parameters can be measured using solid-state NMR. However, the timescales of motion that lead to such a scaling of the anisotropic interactions are not clear. Using numerical simulations in small spin systems, we could show that mostly the magnitude of the anisotropic interaction determines the range of timescales detected by the scaled anisotropic interaction, and experimental parameters play a very minor role.
Alexey Krushelnitsky and Kay Saalwächter
Magn. Reson., 1, 247–259, https://doi.org/10.5194/mr-1-247-2020, https://doi.org/10.5194/mr-1-247-2020, 2020
Short summary
Short summary
This work presents systematic methodological study of one of the types of the nuclear magnetic resonance experiments that enables study of molecular dynamics on a millisecond timescale. A modification of a standard experiment was suggested that excludes possible artefacts and distortions. It has been demonstrated that the standard experiment reveals slow overall motion of proteins in a rigid crystal lattice, whereas the artefact-free experimental setup demonstrates that the proteins are rigid.
Cited articles
Ader, C., Frey, S., Maas, W., Schmidt, H. B., Gorlich, D., and Baldus, M.:
Amyloid-like interactions within nucleoporin FG hydrogels, P. Natl. Acad.
Sci. USA, 107, 6281–6285, https://doi.org/10.1073/pnas.0910163107, 2010.
Adhireksan, Z., Sharma, D., Lee, P. L., and Davey, C. A.: Near-atomic
resolution structures of interdigitated nucleosome fibres, Nat. Commun.,
11, 4747, https://doi.org/10.1038/s41467-020-18533-2, 2020.
Allahverdi, A., Yang, R., Korolev, N., Fan, Y., Davey, C. A., Liu, C.-F. F.,
and Nordenskiöld, L.: The effects of histone H4 tail acetylations on
cation-induced chromatin folding and self-association, Nucleic Acids Res.,
39, 1680–1691, https://doi.org/10.1093/nar/gkq900, 2011.
Allahverdi, A., Chen, Q., Korolev, N., and Nordenskiöld, L.: Chromatin
compaction under mixed salt conditions: Opposite effects of sodium and
potassium ions on nucleosome array folding, Sci. Rep., 5, 8512,
https://doi.org/10.1038/srep08512, 2015.
Allen, H. F., Wade, P. A., and Kutateladze, T. G.: The NuRD architecture,
Cell. Mol. Life Sci., 70, 3513–3524, https://doi.org/10.1007/s00018-012-1256-2,
2013.
Bendandi, A., Patelli, A. S., Diaspro, A., and Rocchia, W.: The role of
histone tails in nucleosome stability: An electrostatic perspective, Comput.
Struct. Biotechnol. J., 18, 2799–2809, https://doi.org/10.1016/j.csbj.2020.09.034,
2020.
Berezhnoy, N. V., Liu, Y., Allahverdi, A., Yang, R., Su, C.-J. J., Liu,
C.-F. F., Korolev, N., and Nordenskiöld, L.: The Influence of Ionic
Environment and Histone Tails on Columnar Order of Nucleosome Core
Particles, Biophys. J., 110, 1720–1731, https://doi.org/10.1016/j.bpj.2016.03.016,
2016.
Bertin, A., Renouard, M., Pedersen, J. S., Livolant, F., and Durand, D.: H3
and H4 Histone Tails Play a Central Role in the Interactions of Recombinant
NCPs, Biophys. J., 92, 2633–2645, https://doi.org/10.1529/biophysj.106.093815,
2007a.
Bertin, A., Mangenot, S., Renouard, M., Durand, D., and Livolant, F.:
Structure and Phase Diagram of Nucleosome Core Particles Aggregated by
Multivalent Cations, Biophys. J., 93, 3652–3663,
https://doi.org/10.1529/biophysj.107.108365, 2007b.
Bertini, I., Luchinat, C., Parigi, G., Ravera, E., Reif, B., and Turano, P.:
Solid-state NMR of proteins sedimented by ultracentrifugation, P. Natl.
Acad. Sci., 108, 10396–10399, https://doi.org/10.1073/pnas.1103854108, 2011.
Bertini, I., Engelke, F., Gonnelli, L., Knott, B., Luchinat, C., Osen, D.,
and Ravera, E.: On the use of ultracentrifugal devices for sedimented solute
NMR, J. Biomol. NMR, 54, 123–127, https://doi.org/10.1007/s10858-012-9657-y, 2012.
Bertini, I., Luchinat, C., Parigi, G., and Ravera, E.: SedNMR: on the edge
between solution and solid-state NMR, Acc. Chem. Res., 46, 2059–69, https://doi.org/10.1021/ar300342f, 2013.
Bilokapic, S., Strauss, M., and Halic, M.: Cryo-EM of nucleosome core
particle interactions in trans, Sci. Rep., 8, 7046,
https://doi.org/10.1038/s41598-018-25429-1, 2018.
Böckmann, A., Gardiennet, C., Verel, R., Hunkeler, A., Loquet, A.,
Pintacuda, G., Emsley, L., Meier, B. H., and Lesage, A.: Characterization of
different water pools in solid-state NMR protein samples, J. Biomol. NMR,
45, 319–327, https://doi.org/10.1007/s10858-009-9374-3, 2009.
Boelens, R., Scheek, R. M., van Boom, J. H., and Kaptein, R.: Complex of lac
repressor headpiece with a 14 base-pair lac operator fragment studied by
two-dimensional nuclear magnetic resonance, J. Mol. Biol., 193, 213–216,
https://doi.org/10.1016/0022-2836(87)90638-3, 1987.
Clapier, C. R., Chakravarthy, S., Petosa, C., Fernández-Tornero, C.,
Luger, K., and Müller, C. W.: Structure of the Drosophila nucleosome core
particle highlights evolutionary constraints on the H2A-H2B histone dimer,
Proteins Struct. Funct. Bioinforma., 71, 1–7, https://doi.org/10.1002/prot.21720,
2008.
Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J.:
Solvent Mediated Interactions in the Structure of the Nucleosome Core
Particle at 1.9Å Resolution, J. Mol. Biol., 319, 1097–1113,
https://doi.org/10.1016/S0022-2836(02)00386-8, 2002.
de Frutos, M., Raspaud, E., Leforestier, A., and Livolant, F.: Aggregation of
Nucleosomes by Divalent Cations, Biophys. J., 81, 1127–1132,
https://doi.org/10.1016/S0006-3495(01)75769-4, 2001.
Dyer, P. N., Edayathumangalam, R. S., White, C. L., Bao, Y., Chakravarthy,
S., Muthurajan, U. M., and Luger, K.: Reconstitution of nucleosome core
particles from recombinant histones and DNA, Methods Enzymol., 375,
23–44, https://doi.org/10.1016/s0076-6879(03)75002-2, 2004.
Elbayed, K., Dillmann, B., Raya, J., Piotto, M., and Engelke, F.: Field
modulation effects induced by sample spinning: application to
high-resolution magic angle spinning NMR, J. Magn. Reson., 174, 2–26,
https://doi.org/10.1016/j.jmr.2004.11.017, 2005.
Eltsov, M., Grewe, D., Lemercier, N., Frangakis, A., Livolant, F., and
Leforestier, A.: Nucleosome conformational variability in solution and in
interphase nuclei evidenced by cryo-electron microscopy of vitreous
sections, Nucleic Acids Res., 46, 9189–9200, https://doi.org/10.1093/nar/gky670,
2018.
Fasci, D., van Ingen, H., Scheltema, R. A., and Heck, A. J. R.: Histone
Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in
Intact Cell Nuclei, Mol. Cell. Proteomics, 17, 2018–2033,
https://doi.org/10.1074/mcp.RA118.000924, 2018.
Ferella, L., Luchinat, C., Ravera, E., and Rosato, A.: SedNMR: a web tool for
optimizing sedimentation of macromolecular solutes for SSNMR, J. Biomol. NMR,
57, 319–26, https://doi.org/10.1007/s10858-013-9795-x, 2013.
Fragai, M., Luchinat, C., Parigi, G., and Ravera, E.: Practical
considerations over spectral quality in solid state NMR spectroscopy of
soluble proteins, J. Biomol. NMR, 57, 155–166,
https://doi.org/10.1007/s10858-013-9776-0, 2013.
Gao, M., Nadaud, P. S., Bernier, M. W., North, J. A., Hammel, P. C.,
Poirier, M. G., and Jaroniec, C. P.: Histone H3 and H4 N-Terminal Tails in
Nucleosome Arrays at Cellular Concentrations Probed by Magic Angle Spinning
NMR Spectroscopy, J. Am. Chem. Soc., 135, 15278–15281,
https://doi.org/10.1021/ja407526s, 2013.
Garcia-Ramirez, M., Dong, F., and Ausio, J.: Role of the histone “tails” in
the folding of oligonucleosomes depleted of histone H1, J. Biol. Chem.,
267, 19587–19595, https://doi.org/10.1016/S0021-9258(18)41815-7, 1992.
Garcia-Saez, I., Menoni, H., Boopathi, R., Shukla, M. S., Soueidan, L.,
Noirclerc-Savoye, M., Le Roy, A., Skoufias, D. A., Bednar, J., Hamiche, A.,
Angelov, D., Petosa, C., and Dimitrov, S.: Structure of an H1-Bound
6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber
Conformation, Mol. Cell, 72, 902-915.e7,
https://doi.org/10.1016/j.molcel.2018.09.027, 2018.
Gardiennet, C., Wiegand, T., Bazin, A., Cadalbert, R., Kunert, B.,
Lacabanne, D., Gutsche, I., Terradot, L., Meier, B. H., and Böckmann, A.:
Solid-state NMR chemical-shift perturbations indicate domain reorientation
of the DnaG primase in the primosome of Helicobacter pylori, J. Biomol. NMR,
64, 189–195, https://doi.org/10.1007/s10858-016-0018-0, 2016.
Gatchalian, J., Wang, X., Ikebe, J., Cox, K. L., Tencer, A. H., Zhang, Y.,
Burge, N. L., Di, L., Gibson, M. D., Musselman, C. A., Poirier, M. G., Kono,
H., Hayes, J. J., and Kutateladze, T. G.: Accessibility of the histone H3
tail in the nucleosome for binding of paired readers, Nat. Commun., 8,
1489, https://doi.org/10.1038/s41467-017-01598-x, 2017.
Gibson, B. A., Doolittle, L. K., Schneider, M. W. G., Jensen, L. E.,
Gamarra, N., Henry, L., Gerlich, D. W., Redding, S., and Rosen, M. K.:
Organization of Chromatin by Intrinsic and Regulated Phase Separation, Cell,
179, 470–484.E21, https://doi.org/10.1016/j.cell.2019.08.037, 2019.
Gordon, F., Luger, K., and Hansen, J. C.: The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays, J. Biol. Chem., 280, 33701–33706, https://doi.org/10.1074/jbc.M507048200, 2005.
Hsieh, T.-H. S. H. S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., and
Rando, O. J.: Mapping Nucleosome Resolution Chromosome Folding in Yeast by
Micro-C, Cell, 162, 108–119, https://doi.org/10.1016/j.cell.2015.05.048, 2015.
Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E.,
Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara,
D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon,
T., Geng, W., Krasny, R., Wei, G.-W., Holst, M. J., McCammon, J. A., and
Baker, N. A.: Improvements to the APBS biomolecular solvation software
suite, Protein Sci., 27, 112–128, https://doi.org/10.1002/pro.3280, 2018.
Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K., and
Hansen, J. C.: The role of the nucleosome acidic patch in modulating higher
order chromatin structure, J. R. Soc. Interface, 10, 20121022,
https://doi.org/10.1098/rsif.2012.1022, 2013.
Kalodimos, C. G., Folkers, G. E., Boelens, R., and Kaptein, R.: Strong DNA
binding by covalently linked dimeric Lac headpiece: evidence for the crucial
role of the hinge helices, P. Natl. Acad. Sci. USA, 98, 6039–6044, https://doi.org/10.1073/pnas.101129898, 2001.
Kalodimos, C. G., Biris, N., Bonvin, A. M. J. J., Levandoski, M. M.,
Guennuegues, M., Boelens, R., and Kaptein, R.: Structure and flexibility
adaptation in nonspecific and specific protein-DNA complexes, Science,
305, 386–389, https://doi.org/10.1126/science.1097064, 2004.
Kan, P.-Y., Lu, X., Hansen, J. C. and Hayes, J. J.: The H3 Tail Domain
Participates in Multiple Interactions during Folding and Self-Association of
Nucleosome Arrays, Mol. Cell. Biol., 27, 2084–2091,
https://doi.org/10.1128/MCB.02181-06, 2007.
Kato, H., van Ingen, H., Zhou, B. R. B.-R., Feng, H., Bustin, M., Kay, L. E.,
and Bai, Y.: Architecture of the high mobility group nucleosomal protein
2-nucleosome complex as revealed by methyl-based NMR, P. Natl. Acad.
Sci. USA, 108, 12283–12288, https://doi.org/10.1073/pnas.1105848108, 2011.
Kitevski-LeBlanc, J. L., Yuwen, T., Dyer, P. N., Rudolph, J., Luger, K., and
Kay, L. E.: Investigating the Dynamics of Destabilized Nucleosomes Using
Methyl-TROSY NMR, J. Am. Chem. Soc., 140, 4774–4777,
https://doi.org/10.1021/jacs.8b00931, 2018.
Korolev, N., Allahverdi, A., Lyubartsev, A. P., and Nordenskiöld, L.: The
polyelectrolyte properties of chromatin, Soft Matter, 8, 9322,
https://doi.org/10.1039/c2sm25662b, 2012.
Lee, W., Tonelli, M., and Markley, J. L.: NMRFAM-SPARKY: enhanced software
for biomolecular NMR spectroscopy, Bioinformatics, 31, 1325–1327,
https://doi.org/10.1093/bioinformatics/btu830, 2015.
Leforestier, A. and Livolant, F.: Liquid crystalline ordering of nucleosome
core particles under macromolecular crowding conditions: evidence for a
discotic columnar hexagonal phase, Biophys. J., 73, 1771–1776,
https://doi.org/10.1016/S0006-3495(97)78207-9, 1997.
le Paige, U. B. and van Ingen, H.: Nucleosome Under NMR's Eye – A Practical Guide, in: eMagRes, edited by: Harris, R. K. and Wasylishen, R. L., available at: https://doi-org.proxy.library.uu.nl/10.1002/9780470034590.emrstm1625 (last access: 21 April 2021), 2020.
Hansen, J. C., Ausio, J., Stanik, V. H., and van Holde, K. E.: Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1, Biochemistry, 28, 9129–9136, https://doi.org/10.1021/bi00449a026, 1989.
Livolant, F., Mangenot, S., Leforestier, A., Bertin, A., de Frutos, M., Raspaud, E., Durand, D., Jackson, G., Samulski, E. T., Matharu, A. S., and Percec, V.: Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics?, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 364, 2615–2633, https://doi.org/10.1098/rsta.2006.1843, 2006.
Lowary, P. and Widom, J.: New DNA sequence rules for high affinity binding
to histone octamer and sequence-directed nucleosome positioning, J. Mol.
Biol., 276, 19–42, https://doi.org/10.1006/jmbi.1997.1494, 1998.
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., and Richmond,
T. J.: Crystal structure of the nucleosome core particle at 2.8 Å
resolution, Nature, 389, 251–260, https://doi.org/10.1038/38444, 1997.
Mainz, A., Peschek, J., Stavropoulou, M., Back, K. C., Bardiaux, B., Asami,
S., Prade, E., Peters, C., Weinkauf, S., Buchner, J., and Reif, B.: The
chaperone αB-crystallin uses different interfaces to capture an
amorphous and an amyloid client, Nat. Struct. Mol. Biol., 22, 898–905,
https://doi.org/10.1038/nsmb.3108, 2015.
Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A. G.,
Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens, H. D. T.,
Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I., and Franke, D.:
ATSAS 3.0: expanded functionality and new tools for small-angle scattering
data analysis, J. Appl. Crystallogr., 54, 343–355,
https://doi.org/10.1107/S1600576720013412, 2021.
Mance, D., Sinnige, T., Kaplan, M., Narasimhan, S., Daniëls, M., Houben, K., Baldus, M., and Weingarth, M.: An Efficient Labelling Approach to Harness Backbone and Side-Chain Protons in 1H-Detected Solid-State NMR Spectroscopy, Angew. Chem. Int. Ed. Engl., 54, 15799–15803, https://doi.org/10.1002/anie.201509170, 2015.
Mandal, A., Boatz, J. C., Wheeler, T. B., and van der Wel, P. C. A.: On the
use of ultracentrifugal devices for routine sample preparation in
biomolecular magic-angle-spinning NMR, J. Biomol. NMR, 67, 165–178,
https://doi.org/10.1007/s10858-017-0089-6, 2017.
Mangenot, S., Leforestier, A., Durand, D., and Livolant, F.: Phase diagram of
nucleosome core particles., J. Mol. Biol., 333, 907–916,
https://doi.org/10.1016/j.jmb.2003.09.015, 2003a.
Mangenot, S., Leforestier, A., Durand, D., and Livolant, F.: X-ray
diffraction characterization of the dense phases formed by nucleosome core
particles., Biophys. J., 84, 2570–2584, https://doi.org/10.1016/S0006-3495(03)75062-0,
2003b.
Mansfield, R. E., Musselman, C. A., Kwan, A. H., Oliver, S. S., Garske, A.
L., Davrazou, F., Denu, J. M., Kutateladze, T. G., and Mackay, J. P.: Plant
Homeodomain (PHD) Fingers of CHD4 Are Histone H3-binding Modules with
Preference for Unmodified H3K4 and Methylated H3K9, J. Biol. Chem., 286,
11779–11791, https://doi.org/10.1074/jbc.M110.208207, 2011.
Materese, C. K., Savelyev, A., and Papoian, G. A.: Counterion Atmosphere and
Hydration Patterns near a Nucleosome Core Particle, J. Am. Chem. Soc.,
131, 15005–15013, https://doi.org/10.1021/ja905376q, 2009.
McGinty, R. K. and Tan, S.: Recognition of the nucleosome by chromatin
factors and enzymes, Curr. Opin. Struct. Biol., 37, 54–61,
https://doi.org/10.1016/j.sbi.2015.11.014, 2016.
Morrison, E. A., Bowerman, S., Sylvers, K. L., Wereszczynski, J., and
Musselman, C. A.: The conformation of the histone H3 tail inhibits
association of the BPTF PHD finger with the nucleosome, Elife, 7, e31481,
https://doi.org/10.7554/eLife.31481, 2018.
Musselman, C. A., Mansfield, R. E., Garske, A. L., Davrazou, F., Kwan, A.
H., Oliver, S. S., O'Leary, H., Denu, J. M., Mackay, J. P., and Kutateladze,
T. G.: Binding of the CHD4 PHD2 finger to histone H3 is modulated by
covalent modifications, Biochem. J., 423, 179–187,
https://doi.org/10.1042/BJ20090870, 2009.
Musselman, C. A., Ramirez, J., Sims, J. K., Mansfield, R. E., Oliver, S. S.,
Denu, J. M., Mackay, J. P., Wade, P. A., Hagman, J., Kutateladze, T. G.,
Ramiŕez, J., Sims, J. K., Mansfield, R. E., Oliver, S. S., Denu, J. M.,
Mackay, J. P., Wade, P. A., Hagman, J., and Kutateladze, T. G.: Bivalent
recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is
required for CHD4-mediated repression, P. Natl. Acad. Sci. USA, 109,
787–792, https://doi.org/10.1073/pnas.1113655109, 2012.
Narasimhan, S., Pinto, C., Lucini Paioni, A., van der Zwan, J., Folkers, G.
E., and Baldus, M.: Characterizing proteins in a native bacterial environment
using solid-state NMR spectroscopy, Nat. Protoc., 16, 893–918,
https://doi.org/10.1038/s41596-020-00439-4, 2021.
Nozaki, T., Kaizu, K., Pack, C.-G., Tamura, S., Tani, T., Hihara, S., Nagai,
T., Takahashi, K., and Maeshima, K.: Flexible and dynamic nucleosome fiber in
living mammalian cells, Nucleus, 4, 349–356, https://doi.org/10.4161/nucl.26053,
2013.
Osipova, T. N., Pospelov, V. A., Svetlikova, S. B., and Vorob'ev, V. I.: The role of histone H1 in compaction of nucleosomes. Sedimentation behaviour of oligonucleosomes in solution, Eur. J. Biochem., 113, 183–188, https://doi.org/10.1111/j.1432-1033.1980.tb06153.x, 1980.
Peng, T., Zhai, Y., Atlasi, Y., ter Huurne, M., Marks, H., Stunnenberg, H.
G., and Megchelenbrink, W.: STARR-seq identifies active, chromatin-masked,
and dormant enhancers in pluripotent mouse embryonic stem cells, Genome
Biol., 21, 243, https://doi.org/10.1186/s13059-020-02156-3, 2020.
Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M., and
Cosma, M. P.: Chromatin Fibers Are Formed by Heterogeneous Groups of
Nucleosomes In Vivo, Cell, 160, 1145–1158,
https://doi.org/10.1016/j.cell.2015.01.054, 2015.
Robinson, P. J. J., Fairall, L., Huynh, V. A. T., and Rhodes, D.: EM
measurements define the dimensions of the “30-nm” chromatin fiber:
Evidence for a compact, interdigitated structure, P. Natl. Acad. Sci. USA,
103, 6506–6511, https://doi.org/10.1073/pnas.0601212103, 2006.
Sanulli, S., Trnka, M. J., Dharmarajan, V., Tibble, R. W., Pascal, B. D.,
Burlingame, A. L., Griffin, P. R., Gross, J. D., and Narlikar, G. J.: HP1
reshapes nucleosome core to promote phase separation of heterochromatin,
Nature, 575, 390–394, https://doi.org/10.1038/s41586-019-1669-2, 2019.
Schalch, T., Duda, S., Sargent, D. F. and Richmond, T. J.: X-ray structure
of a tetranucleosome and its implications for the chromatin fibre, Nature,
436, 138–141, https://doi.org/10.1038/nature03686, 2005.
Schrödinger, LLC: PyMOL (The PyMOL Molecular Graphics System, Version 2.3 Schrödinger, LLC), page 5, line 62, 2015.
Schwarz, P. M., Felthauser, A., Fletcher, T. M., and Hansen, J. C.:
Reversible Oligonucleosome Self-Association: Dependence on Divalent Cations
and Core Histone Tail Domains, Biochemistry, 35,
4009–4015, https://doi.org/10.1021/bi9525684, 1996.
Shaytan, A. K., Armeev, G. A., Goncearenco, A., Zhurkin, V. B., Landsman, D., and Panchenko, A.R.: Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions, J. Mol. Biol., 428, 221–237, https://doi.org/10.1016/j.jmb.2015.12.004, 2016.
Shi, X., Prasanna, C., Nagashima, T., Yamazaki, T., Pervushin, K., and
Nordenskiöld, L.: Structure and Dynamics in the Nucleosome Revealed by
Solid-State NMR, Angew. Chemie Int. Ed., 57, 9734–9738,
https://doi.org/10.1002/anie.201804707, 2018.
Shi, X., Prasanna, C., Soman, A., Pervushin, K., and Nordenskiöld, L.:
Dynamic networks observed in the nucleosome core particles couple the
histone globular domains with DNA, Commun. Biol., 3, 639,
https://doi.org/10.1038/s42003-020-01369-3, 2020.
Sinha, K. K., Gross, J. D., and Narlikar, G. J.: Distortion of histone
octamer core promotes nucleosome mobilization by a chromatin remodeler,
Science, 355, eaaa3761, https://doi.org/10.1126/science.aaa3761, 2017.
Song, F., Chen, P., Sun, D., Wang, M., Dong, L., Liang, D., Xu, R.-M. R.-M.,
Zhu, P., and Li, G.: Cryo-EM Study of the Chromatin Fiber Reveals a Double
Helix Twisted by Tetranucleosomal Units, Science, 344,
376–380, https://doi.org/10.1126/science.1251413, 2014.
Speranzini, V., Pilotto, S., Sixma, T. K., and Mattevi, A.: Touch, act and
go: landing and operating on nucleosomes, EMBO J., 35, 376–388,
https://doi.org/10.15252/embj.201593377, 2016.
Spronk, C. A., Folkers, G. E., Noordman, A. M., Wechselberger, R., van den
Brink, N., Boelens, R., and Kaptein, R.: Hinge-helix formation and DNA bending in various lac repressor-operator complexes, EMBO J., 18, 6472–6480, https://doi.org/10.1093/emboj/18.22.6472, 1999.
Stützer, A., Liokatis, S., Kiesel, A., Schwarzer, D., Sprangers, R.,
Söding, J., Selenko, P., and Fischle, W.: Modulations of DNA Contacts by
Linker Histones and Post-translational Modifications Determine the Mobility
and Modifiability of Nucleosomal H3 Tails, Mol. Cell, 61, 247–259,
https://doi.org/10.1016/j.molcel.2015.12.015, 2016.
Trellet, M., Melquiond, A. S. J., and Bonvin, A. M. J. J.: A Unified
Conformational Selection and Induced Fit Approach to Protein-Peptide
Docking, edited by: Keskin, O., PLoS One, 8, e58769,
https://doi.org/10.1371/journal.pone.0058769, 2013.
Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E., and Kay, L. E.:
Cross-Correlated Relaxation Enhanced 1H–13C NMR Spectroscopy of Methyl
Groups in Very High Molecular Weight Proteins and Protein Complexes, J. Am.
Chem. Soc., 125, 10420–10428, https://doi.org/10.1021/ja030153x, 2003.
van Dijk, M. and Bonvin, A. M. J. J.: 3D-DART: a DNA structure modelling
server, Nucleic Acids Res., 37, W235–W239,
https://doi.org/10.1093/nar/gkp287, 2009.
van Emmerik, C. L. and van Ingen, H.: Unspinning chromatin: Revealing the
dynamic nucleosome landscape by NMR, Prog. Nucl. Magn. Reson. Spectrosc.,
110, 1–19, https://doi.org/10.1016/j.pnmrs.2019.01.002, 2019.
van Vugt, J. J. F. A., de Jager, M., Murawska, M., Brehm, A., van Noort, J.,
and Logie, C.: Multiple aspects of ATP-dependent nucleosome translocation by
RSC and Mi-2 are directed by the underlying DNA sequence, PLoS One, 4,
e6345, https://doi.org/10.1371/journal.pone.0006345, 2009.
van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C.,
Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries,
S. J., and Bonvin, A. M. J. J.: The HADDOCK2.2 Web Server: User-Friendly
Integrative Modeling of Biomolecular Complexes, J. Mol. Biol., 428,
720–725, https://doi.org/10.1016/j.jmb.2015.09.014, 2016.
Vasudevan, D., Chua, E. Y. D., and Davey, C. A.: Crystal Structures of
Nucleosome Core Particles Containing the `601' Strong Positioning Sequence,
J. Mol. Biol., 403, 1–10, https://doi.org/10.1016/j.jmb.2010.08.039, 2010.
Wang, S., Vogirala, V. K., Soman, A., Berezhnoy, N. V., Liu, Z. B., Wong,
A. S. W., Korolev, N., Su, C. J., Sandin, S., and Nordenskiöld, L.: Linker
histone defines structure and self-association behaviour of the 177 bp human
chromatosome, Sci. Rep., 11, 380, https://doi.org/10.1038/s41598-020-79654-8, 2021.
Webb, B. and Sali, A.: Comparative Protein Structure Modeling Using
MODELLER, Curr. Protoc. Bioinforma., 54, Pages 5.6.1–5.6.37, https://doi.org/10.1002/cpbi.3, 2016.
Weidemann, T., Wachsmuth, M., Knoch, T. A., Müller, G., Waldeck, W., and
Langowski, J.: Counting Nucleosomes in Living Cells with a Combination of
Fluorescence Correlation Spectroscopy and Confocal Imaging, J. Mol. Biol.,
334, 229–240, https://doi.org/10.1016/j.jmb.2003.08.063, 2003.
Wiegand, T., Lacabanne, D., Torosyan, A., Boudet, J., Cadalbert, R., Allain,
F. H.-T., Meier, B. H., and Böckmann, A.: Sedimentation Yields Long-Term
Stable Protein Samples as Shown by Solid-State NMR, Front. Mol. Biosci., 7, https://doi.org/10.3389/fmolb.2020.00017, 2020.
Williamson, M. P.: Using chemical shift perturbation to characterise ligand
binding, Prog. Nucl. Magn. Reson. Spectrosc, 73, 1–16, https://doi.org/10.1016/j.pnmrs.2013.02.001, 2013.
Xiang, S., le Paige, U. B., Horn, V., Houben, K., Baldus, M., and van Ingen,
H.: Site-Specific Studies of Nucleosome Interactions by Solid-State NMR
Spectroscopy, Angew. Chemie Int. Ed., 57, 4571–4575,
https://doi.org/10.1002/anie.201713158, 2018.
Short summary
NMR studies can be of great help in understanding the molecular mechanisms of nucleosome functions. For solid-state NMR, nucleosomes need to be tightly packed together. We show that centrifugation of nucleosomes results in formation of gels with very high packing ratios yet without pronounced order in the packing and without formation of specific or stable inter-nucleosome contacts. This makes the approach suitable also for the study of proteins that bind weakly to the nucleosome.
NMR studies can be of great help in understanding the molecular mechanisms of nucleosome...
Special issue