Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
György Pintér
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Katharina F. Hohmann
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
J. Tassilo Grün
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Julia Wirmer-Bartoschek
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Clemens Glaubitz
Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Boris Fürtig
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Harald Schwalbe
CORRESPONDING AUTHOR
Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
Related subject area
Field: Liquid-state NMR | Topic: Applications – biological macromolecules
NMR side-chain assignments of the Crimean–Congo hemorrhagic fever virus glycoprotein n cytosolic domain
Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR
Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine
Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket
Localising nuclear spins by pseudocontact shifts from a single tagging site
Localising individual atoms of tryptophan side chains in the metallo-β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites
Fluorine NMR study of proline-rich sequences using fluoroprolines
Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation
Anomalous amide proton chemical shifts as signatures of hydrogen bonding to aromatic sidechains
Rapid assessment of Watson–Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST
High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin
Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone
Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling
The long-standing relationship between paramagnetic NMR and iron–sulfur proteins: the mitoNEET example. An old method for new stories or the other way around?
Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method
Fragile protein folds: sequence and environmental factors affecting the equilibrium of two interconverting, stably folded protein conformations
Towards resolving the complex paramagnetic nuclear magnetic resonance (NMR) spectrum of small laccase: assignments of resonances to residue-specific nuclei
Phosphoserine for the generation of lanthanide-binding sites on proteins for paramagnetic nuclear magnetic resonance spectroscopy
Louis Brigandat, Maëlys Laux, Caroline Marteau, Laura Cole, Anja Böckmann, Lauriane Lecoq, Marie-Laure Fogeron, and Morgane Callon
Magn. Reson., 5, 95–101, https://doi.org/10.5194/mr-5-95-2024, https://doi.org/10.5194/mr-5-95-2024, 2024
Short summary
Short summary
We used NMR to sequentially assign the side-chain resonances of the cytosolic domain of glycoprotein n of the Crimean–Congo hemorrhagic fever virus. The combination of cell-free protein synthesis with high-field NMR and artificial intelligence approaches facilitated a time- and effort-efficient approach. Our results will be harnessed to study the membrane-bound form of the domain and its interactions with virulence factors, which will ultimately help to understand their role in disease.
Sarah Kuschert, Martin Stroet, Yanni Ka-Yan Chin, Anne Claire Conibear, Xinying Jia, Thomas Lee, Christian Reinhard Otto Bartling, Kristian Strømgaard, Peter Güntert, Karl Johan Rosengren, Alan Edward Mark, and Mehdi Mobli
Magn. Reson., 4, 57–72, https://doi.org/10.5194/mr-4-57-2023, https://doi.org/10.5194/mr-4-57-2023, 2023
Short summary
Short summary
The 20 genetically encoded amino acids provide the basis for most proteins and peptides that make up the machinery of life. This limited repertoire is vastly expanded by the introduction of non-canonical amino acids (ncAAs). Studying the structure of protein-containing ncAAs requires new computational representations that are compatible with existing modelling software. We have developed an online tool for this to aid future structural studies of this class of complex biopolymer.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Stephan Grzesiek, Johannes Paladini, Judith Habazettl, and Rajesh Sonti
Magn. Reson., 3, 91–99, https://doi.org/10.5194/mr-3-91-2022, https://doi.org/10.5194/mr-3-91-2022, 2022
Short summary
Short summary
We show here that binding of the anticancer drug imatinib to the ATP site of Abelson kinase and not binding to its allosteric site coincides with the opening of the kinase regulatory core at nanomolar concentrations. This has implications for the understanding of Abelson’s kinase regulation and activity during medication as well as for the design of new Abelson kinase inhibitors.
Henry W. Orton, Elwy H. Abdelkader, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 65–76, https://doi.org/10.5194/mr-3-65-2022, https://doi.org/10.5194/mr-3-65-2022, 2022
Short summary
Short summary
Installing a tag containing a paramagnetic metal ion on a protein can lead to large changes (pseudocontact shifts) in the resonances observed in NMR spectra. These are easily measured and contain valuable long-range structural information. The present work shows that a single tagging site furnished with different tags can be sufficient to localise atoms in proteins with high accuracy. In fact, this strategy works almost as well as the same number of tags distributed over multiple tagging sites.
Henry W. Orton, Iresha D. Herath, Ansis Maleckis, Shereen Jabar, Monika Szabo, Bim Graham, Colum Breen, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 1–13, https://doi.org/10.5194/mr-3-1-2022, https://doi.org/10.5194/mr-3-1-2022, 2022
Short summary
Short summary
This paper explores a method for determining the solution structure of a solvent-exposed polypeptide segment (the L3 loop), which is next to the active site of the penicillin-degrading enzyme IMP-1. Tagging three different sites on the protein with paramagnetic metal ions allowed positioning of the L3 loop with atomic resolution. It was found that the method was more robust when omitting data obtained with different metal ions if obtained with the same tag at the same tagging site.
Davy Sinnaeve, Abir Ben Bouzayene, Emile Ottoy, Gert-Jan Hofman, Eva Erdmann, Bruno Linclau, Ilya Kuprov, José C. Martins, Vladimir Torbeev, and Bruno Kieffer
Magn. Reson., 2, 795–813, https://doi.org/10.5194/mr-2-795-2021, https://doi.org/10.5194/mr-2-795-2021, 2021
Short summary
Short summary
Fluorine NMR was used to study the interaction between a proline-rich peptide and a SH3 domain using 4S- and 4R-fluorinated prolines whose potential as NMR probes has not been exploited yet. We present a comprehensive study addressing several aspects to be considered when using these residues as NMR probes, including relaxation and dynamics. We show that their conformational bias may be used to modulate the kinetics of protein binding to proline-rich motifs.
Christopher A. Waudby and John Christodoulou
Magn. Reson., 2, 777–793, https://doi.org/10.5194/mr-2-777-2021, https://doi.org/10.5194/mr-2-777-2021, 2021
Short summary
Short summary
We describe a suite of experiments that exploit field-dependent relaxation measurements of four-spin transitions in methyl groups to characterise chemical exchange processes and which can be used as an alternative or complement to CPMG relaxation dispersion measurements. We show that these four-spin transitions benefit from the methyl TROSY effect and so provide a unique combination of slow intrinsic relaxation and high sensitivity to chemical exchange.
Kumaran Baskaran, Colin W. Wilburn, Jonathan R. Wedell, Leonardus M. I. Koharudin, Eldon L. Ulrich, Adam D. Schuyler, Hamid R. Eghbalnia, Angela M. Gronenborn, and Jeffrey C. Hoch
Magn. Reson., 2, 765–775, https://doi.org/10.5194/mr-2-765-2021, https://doi.org/10.5194/mr-2-765-2021, 2021
Short summary
Short summary
The Biological Magnetic Resonance Data Bank (BMRB) has been used to identify overall trends, for example, the relationship between chemical shift and backbone conformation. The BMRB archive has grown so that statistical outliers are sufficiently numerous to afford insights into unusual or unique structural features in proteins. We analyze amide proton chemical shift outliers to gain insights into the occurrence of hydrogen bonds between an amide NH and the p-pi cloud of aromatic sidechains.
Bei Liu, Atul Rangadurai, Honglue Shi, and Hashim M. Al-Hashimi
Magn. Reson., 2, 715–731, https://doi.org/10.5194/mr-2-715-2021, https://doi.org/10.5194/mr-2-715-2021, 2021
Short summary
Short summary
There is growing interest in mapping exchange dynamics between Watson–Crick and Hoogsteen conformations across different DNA contexts. However, current methods are ill-suited for measurements at a large scale because they require isotopically enriched samples. We report that Hoogsteen dynamics can be measured on unlabeled samples using 1H CEST experiments, which have higher throughput and lower cost relative to conventional methods and also provide new insights into Hoogsteen dynamics.
Lilia Milanesi, Clare R. Trevitt, Brian Whitehead, Andrea M. Hounslow, Salvador Tomas, Laszlo L. P. Hosszu, Christopher A. Hunter, and Jonathan P. Waltho
Magn. Reson., 2, 629–642, https://doi.org/10.5194/mr-2-629-2021, https://doi.org/10.5194/mr-2-629-2021, 2021
Short summary
Short summary
The overall aim of the study is to provide a basis from which to improve the ability of tamoxifen family drugs to reduce the activity of a secondary target protein, calmodulin, during tumour development. The main conclusion is that the binding of a tamoxifen analogue is quite unlike that of other anti-calmodulin compounds in that two drug molecules bring the two domains of calmodulin into close proximity, but they are not fixed in orientation relative to the protein.
Chih-Ting Huang, Yei-Chen Lai, Szu-Yun Chen, Meng-Ru Ho, Yun-Wei Chiang, and Shang-Te Danny Hsu
Magn. Reson., 2, 375–386, https://doi.org/10.5194/mr-2-375-2021, https://doi.org/10.5194/mr-2-375-2021, 2021
Short summary
Short summary
Trigger factor (TF) is a conserved bacterial molecular chaperone that exists in a monomer–dimer equilibrium in solution. It binds to the ribosome as a monomer to facilitate folding of nascent polypeptide chains. We showed that dimeric TF exhibits distinct domain dynamics and conformational polymorphism and that TF contains multiple substrate binding sites that are only accessible in its monomeric form. The equilibrium of TF in different oligomeric states may serve as a regulatory mechanism.
Nestor Kamdem, Yvette Roske, Dmytro Kovalskyy, Maxim O. Platonov, Oleksii Balinskyi, Annika Kreuchwig, Jörn Saupe, Liang Fang, Anne Diehl, Peter Schmieder, Gerd Krause, Jörg Rademann, Udo Heinemann, Walter Birchmeier, and Hartmut Oschkinat
Magn. Reson., 2, 355–374, https://doi.org/10.5194/mr-2-355-2021, https://doi.org/10.5194/mr-2-355-2021, 2021
Short summary
Short summary
The Wnt signalling pathway plays a major role in prevention of cancer, whereby the protein Dishevelled connects from the transmembrane receptor Frizzled to downstream effectors via its PDZ domain. Here, cycles of chemical synthesis and structural biology are applied to develop PDZ ligands that block the Frizzled–Dishevelled interaction using NMR for screening, in ligand development, and for deriving structure–activity relationships. Cellular reporter assays demonstrate their efficacy.
Francesca Camponeschi, Angelo Gallo, Mario Piccioli, and Lucia Banci
Magn. Reson., 2, 203–221, https://doi.org/10.5194/mr-2-203-2021, https://doi.org/10.5194/mr-2-203-2021, 2021
Short summary
Short summary
The iron–sulfur cluster binding properties of human mitoNEET have been investigated by 1D and 2D 1H paramagnetic NMR spectroscopy. The NMR spectra of both oxidized and reduced mitoNEET are significantly different from those reported previously for other [Fe2S2] proteins. Our findings revealed the unique electronic properties of mitoNEET and suggests that the specific electronic structure of the cluster possibly drives the functional properties of different [Fe2S2] proteins.
Mitsuhiro Takeda, Yohei Miyanoiri, Tsutomu Terauchi, and Masatsune Kainosho
Magn. Reson., 2, 223–237, https://doi.org/10.5194/mr-2-223-2021, https://doi.org/10.5194/mr-2-223-2021, 2021
Short summary
Short summary
Although both the hydrophobic aliphatic chain and hydrophilic ζ-amino group of the lysine side chain presumably contribute to the structures and functions of proteins, the dual nature of the lysine residue has not been fully understood yet, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain at the atomic scale. We describe herein a novel strategy to address the current situation using nuclear magnetic resonance spectroscopy.
Xingjian Xu, Igor Dikiy, Matthew R. Evans, Leandro P. Marcelino, and Kevin H. Gardner
Magn. Reson., 2, 63–76, https://doi.org/10.5194/mr-2-63-2021, https://doi.org/10.5194/mr-2-63-2021, 2021
Short summary
Short summary
While most proteins adopt one conformation, several interconvert between two or more very different structures. Knowing how sequence changes and small-molecule binding can control this behavior is essential for both understanding biology and inspiring new “molecular switches” which can control cellular pathways. This work contributes by examining these topics in the ARNT protein, showing that features of both the folded and unfolded states contribute to the interconversion process.
Rubin Dasgupta, Karthick B. S. S. Gupta, Huub J. M. de Groot, and Marcellus Ubbink
Magn. Reson., 2, 15–23, https://doi.org/10.5194/mr-2-15-2021, https://doi.org/10.5194/mr-2-15-2021, 2021
Short summary
Short summary
A method is demonstrated that can help in sequence-specific NMR signal assignment to nuclear spins near a strongly paramagnetic metal in an enzyme. A combination of paramagnetically tailored NMR experiments and second-shell mutagenesis was used to attribute previously observed chemical exchange processes in the active site of laccase to specific histidine ligands. The signals of nuclei close to the metal can be used as spies to unravel the role of motions in the catalytic process.
Sreelakshmi Mekkattu Tharayil, Mithun Chamikara Mahawaththa, Choy-Theng Loh, Ibidolapo Adekoya, and Gottfried Otting
Magn. Reson., 2, 1–13, https://doi.org/10.5194/mr-2-1-2021, https://doi.org/10.5194/mr-2-1-2021, 2021
Short summary
Short summary
A new way is presented for creating lanthanide binding sites on proteins using site-specifically introduced phosphoserine residues. The paramagnetic effects of lanthanides generate long-range effects, which contain structural information and are readily measured by NMR spectroscopy. Excellent correlations between experimentally observed and back-calculated pseudocontact shifts attest to very good immobilization of the lanthanide ions relative to the proteins.
Cited articles
Afek, A., Shi, H., Rangadurai, A., Sahay, H., Senitzki, A., Xhani, S., Fang,
M., Salinas, R., Mielko, Z., Pufall, M. A., Poon, G. M. K., Haran, T. E.,
Schumacher, M. A., Al-Hashimi, H. M., and Gordân, R.: DNA mismatches
reveal conformational penalties in protein-DNA recognition, Nature, 587,
291–296, https://doi.org/10.1038/s41586-020-2843-2, 2020.
Akasaka, K.: Probing Conformational Fluctuation of Proteins by Pressure
Perturbation, Chem. Rev., 106, 1814–1835,
https://doi.org/10.1021/cr040440z, 2006.
Akasaka, K.: Protein Studies by High-Pressure NMR, in: Experimental
Approaches of NMR Spectroscopy: Methodology and Application to Life Science
and Materials Science, edited by: The Nuclear Magnetic Resonance Society of
Japan, Springer, Singapore, 3–36,
https://doi.org/10.1007/978-981-10-5966-7_1, 2018.
Akasaka, K., Naito, A., Nakatani, H., and Imanari, M.: Construction and
performance of a temperature-jump NMR apparatus, Rev. Sci. Instrum., 61,
66–68, https://doi.org/10.1063/1.1141901, 1990.
Akasaka, K., Naito, A., and Nakatani, H.: Temperature-jump NMR study of
protein folding: Ribonuclease A at low pH, J. Biomol. NMR, 1, 65–70,
https://doi.org/10.1007/BF01874569, 1991.
Akasaka, K., Kitahara, R., and Kamatari, Y. O.: Exploring the folding energy
landscape with pressure, Arch. Biochem. Biophys., 531, 110–115,
https://doi.org/10.1016/j.abb.2012.11.016, 2013.
Akasaka, K., Maeno, A., Murayama, T., Tachibana, H., Fujita, Y., Yamanaka,
H., Nishida, N., and Atarashi, R.: Pressure-assisted dissociation and
degradation of “proteinase K-resistant” fibrils prepared by seeding with
scrapie-infected hamster prion protein, Prion, 8, 314–318,
https://doi.org/10.4161/pri.32081, 2014.
Alderson, T. R., Charlier, C., Torchia, D. A., Anfinrud, P., and Bax, A.:
Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump
NMR Spectroscopy, J. Am. Chem. Soc., 139, 11036–11039,
https://doi.org/10.1021/jacs.7b06676, 2017.
Alshamleh, I., Krause, N., Richter, C., Kurrle, N., Serve, H., Günther,
U. L., and Schwalbe, H.: Real-Time NMR Spectroscopy for Studying Metabolism,
Angew. Chem. Int. Edit., 59, 2304–2308,
https://doi.org/10.1002/anie.201912919, 2020.
Anderson, J. E.: Restriction endonucleases and modification methylases,
Curr. Opin. Struc. Biol., 3, 24–30,
https://doi.org/10.1016/0959-440X(93)90197-S, 1993.
Ardenkjær-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson,
L., Lerche, M. H., Servin, R., Thaning, M., and Golman, K.: Increase in
signal-to-noise ratio of > 10 000 times in liquid-state NMR,
P. Natl. Acad. Sci. USA, 100, 10158–10163,
https://doi.org/10.1073/pnas.1733835100, 2003.
Bajaj, V. S., Mak-Jurkauskas, M. L., Belenky, M., Herzfeld, J., and Griffin,
R. G.: Functional and shunt states of bacteriorhodopsin resolved by 250 GHz
dynamic nuclear polarization-enhanced solid-state NMR, P. Natl. Acad. Sci. USA, 106, 9244–9249, https://doi.org/10.1073/pnas.0900908106, 2009.
Balbach, J., Forge, V., van Nuland, N. A. J., Winder, S. L., Hore, P. J.,
and Dobson, C. M.: Following protein folding in real time using NMR
spectroscopy, Nat. Struct. Biol., 2, 865–870,
https://doi.org/10.1038/nsb1095-865, 1995.
Balbach, J., Forge, V., Lau, W. S., van Nuland, N. A. J., Brew, K., and
Dobson, C. M.: Protein Folding Monitored at Individual Residues During a
Two-Dimensional NMR Experiment, Science, 274, 1161–1163,
https://doi.org/10.1126/science.274.5290.1161, 1996.
Balbach, J., Klamt, A., Nagarathinam, K., Tanabe, M., and Kumar, A.:
Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein
apoKti11 Detected by NMR Spectroscopy, J. Phys. Chem. B, 123, 792–801,
https://doi.org/10.1021/acs.jpcb.8b11019, 2019.
Baldwin, R. L.: Pulsed H/D-exchange studies of folding intermediates, Curr. Opin. Struc. Biol., 3, 84–91, https://doi.org/10.1016/0959-440X(93)90206-Z, 1993.
Bamann, C., Bamberg, E., Wachtveitl, J., and Glaubitz, C.: Proteorhodopsin,
BBA-Bioenergetics, 1837, 614–625, https://doi.org/10.1016/j.bbabio.2013.09.010, 2014.
Bargon, J.: The Discovery of Chemically Induced Dynamic Polarization (CIDNP), Helv. Chim. Acta, 89, 2082–2102, https://doi.org/10.1002/hlca.200690199, 2006.
Bargon, J., Fischer, H., and Johnsen, U.: Kernresonanz-Emissionslinien
während rascher Radikalreaktionen: I. Aufnahmeverfahren und Beispiele,
Z. Naturforsch. Pt. A, 22, 1551–1555, https://doi.org/10.1515/zna-1967-1014, 1967.
Barraud, P., Gato, A., Heiss, M., Catala, M., Kellner, S., and Tisné,
C.: Time-resolved NMR monitoring of tRNA maturation, Nat. Commun., 10, 3373,
https://doi.org/10.1038/s41467-019-11356-w, 2019.
Becerra, L. R., Gerfen, G. J., Temkin, R. J., Singel, D. J., and Griffin, R.
G.: Dynamic nuclear polarization with a cyclotron resonance maser at 5 T,
Phys. Rev. Lett., 71, 3561–3564, https://doi.org/10.1103/PhysRevLett.71.3561, 1993.
Becker-Baldus, J. and Glaubitz, C.: Cryo-Trapped Intermediates of Retinal
Proteins Studied by DNP-Enhanced MAS NMR Spectroscopy, eMagRes, 7, 79–92, available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470034590.emrstm1552 (last access: 28 April 2021), 2018.
Becker-Baldus, J., Bamann, C., Saxena, K., Gustmann, H., Brown, L. J.,
Brown, R. C. D., Reiter, C., Bamberg, E., Wachtveitl, J., Schwalbe, H., and
Glaubitz, C.: Enlightening the photoactive site of channelrhodopsin-2 by
DNP-enhanced solid-state NMR spectroscopy, P. Natl. Acad. Sci. USA, 112,
9896–9901, https://doi.org/10.1073/pnas.1507713112, 2015.
Bellomo, G., Bologna, S., Gonnelli, L., Ravera, E., Fragai, M., Lelli, M.,
and Luchinat, C.: Aggregation kinetics of the Aβ1–40 peptide
monitored by NMR, Chem. Commun., 54, 7601–7604,
https://doi.org/10.1039/C8CC01710G, 2018.
Berg, J. M.: Zinc-finger proteins, Curr. Opin. Struc. Biol., 3, 11–16,
https://doi.org/10.1016/0959-440X(93)90195-Q, 1993.
Berliner, L. J. and Kaptein, R.: Laser photo-CIDNP detection of surface
aromatic residues in dissociating bovine alpha-lactalbumin at submillimolar
concentrations, J. Biol. Chem., 255, 3261–3262,
https://doi.org/10.1016/S0021-9258(19)85691-0, 1980.
Bernard, C., Houben, K., Derix, N. M., Marks, D., van der Horst, M. A.,
Hellingwerf, K. J., Boelens, R., Kaptein, R., and van Nuland, N. A. J.: The
Solution Structure of a Transient Photoreceptor Intermediate: Δ25
Photoactive Yellow Protein, Structure, 13, 953–962,
https://doi.org/10.1016/j.str.2005.04.017, 2005.
Bessi, I., Jonker, H. R. A., Richter, C., and Schwalbe, H.: Involvement of
Long-Lived Intermediate States in the Complex Folding Pathway of the Human
Telomeric G-Quadruplex, Angew. Chem. Int. Edit., 54, 8444–8448,
https://doi.org/10.1002/anie.201502286, 2015.
Bouvignies, G., Vallurupalli, P., Hansen, D. F., Correia, B. E., Lange, O.,
Bah, A., Vernon, R. M., Dahlquist, F. W., Baker, D., and Kay, L. E.:
Solution structure of a minor and transiently formed state of a T4 lysozyme
mutant, Nature, 477, 111–114, https://doi.org/10.1038/nature10349, 2011.
Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., and Heckel, A.:
Light-Controlled Tools, Angew. Chem. Int. Edit., 51, 8446–8476,
https://doi.org/10.1002/anie.201202134, 2012.
Brooks, C. L.: Molecular simulations of peptide and protein unfolding: in
quest of a molten globule, Curr. Opin. Struc. Biol., 3, 92–98,
https://doi.org/10.1016/0959-440X(93)90207-2, 1993.
Buck, F., Rüterjans, H., Kaptein, R., and Beyreuther, K.:
Photochemically induced dynamic nuclear polarization investigation of
complex formation of the NH2-terminal DNA-binding domain of lac repressor
with poly[d(AT)], P. Natl. Acad. Sci. USA, 77, 5145–5148,
https://doi.org/10.1073/pnas.77.9.5145, 1980.
Buck, J., Fürtig, B., Noeske, J., Wöhnert, J., and Schwalbe, H.:
Time-resolved NMR methods resolving ligand-induced RNA folding at atomic
resolution, P. Natl. Acad. Sci. USA, 104, 15699–15704,
https://doi.org/10.1073/pnas.0703182104, 2007.
Buck, M.: Trifluoroethanol and colleagues: cosolvents come of age, Recent
studies with peptides and proteins, Q. Rev. Biophys., 31, 297–355,
https://doi.org/10.1017/S003358359800345X, 1998.
Buck, M., Radford, S. E., and Dobson, C. M.: A partially folded state of hen
egg white lysozyme in trifluoroethanol: structural characterization and
implications for protein folding, Biochemistry, 32, 669–678,
https://doi.org/10.1021/bi00053a036, 1993.
Buck, M., Schwalbe, H., and Dobson, C. M.: Characterization of
Conformational Preferences in a Partly Folded Protein by Heteronuclear NMR
Spectroscopy: Assignment and Secondary Structure Analysis of Hen Egg-White
Lysozyme in Trifluoroethanol, Biochemistry, 34, 13219–13232,
https://doi.org/10.1021/bi00040a038, 1995.
Canet, D., Lyon, C. E., Scheek, R. M., Robillard, G. T., Dobson, C. M.,
Hore, P. J., and van Nuland, N. A. J.: Rapid Formation of Non-native
Contacts During the Folding of HPr Revealed by Real-time Photo-CIDNP NMR and
Stopped-flow Fluorescence Experiments, J. Mol. Biol., 330, 397–407,
https://doi.org/10.1016/S0022-2836(03)00507-2, 2003.
Caro, J. A. and Wand, A. J.: Practical aspects of high-pressure NMR
spectroscopy and its applications in protein biophysics and structural
biology, Methods, 148, 67–80, https://doi.org/10.1016/j.ymeth.2018.06.012,
2018.
Carravetta, M., Zhao, X., Johannessen, O. G., Lai, W. C., Verhoeven, M. A.,
Bovee-Geurts, P. H. M., Verdegem, P. J. E., Kiihne, S., Luthman, H., de Groot, H. J. M., deGrip, W. J., Lugtenburg, J., and Levitt, M. H.:
Protein-Induced Bonding Perturbation of the Rhodopsin Chromophore Detected
by Double-Quantum Solid-State NMR, J. Am. Chem. Soc., 126, 3948–3953,
https://doi.org/10.1021/ja039390q, 2004.
Cellitti, S. E., Jones, D. H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H.,
Brittain, S. M., Brinker, A., Caldwell, J., Bursulaya, B., Spraggon, G.,
Brock, A., Ryu, Y., Uno, T., Schultz, P. G., and Geierstanger, B. H.: In
vivo Incorporation of Unnatural Amino Acids to Probe Structure, Dynamics,
and Ligand Binding in a Large Protein by Nuclear Magnetic Resonance
Spectroscopy, J. Am. Chem. Soc., 130, 9268–9281,
https://doi.org/10.1021/ja801602q, 2008.
Charlier, C., Courtney, J. M., Anfinrud, P., and Bax, A.: Interrupted
Pressure-Jump NMR Experiments Reveal Resonances of On-Pathway Protein
Folding Intermediate, J. Phys. Chem. B, 122, 11792–11799,
https://doi.org/10.1021/acs.jpcb.8b08456, 2018a.
Charlier, C., Courtney, J. M., Alderson, T. R., Anfinrud, P., and Bax, A.:
Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR, J. Am. Chem. Soc., 140, 8096–8099, https://doi.org/10.1021/jacs.8b04833, 2018b.
Charlier, C., Alderson, T. R., Courtney, J. M., Ying, J., Anfinrud, P., and
Bax, A.: Study of protein folding under native conditions by rapidly
switching the hydrostatic pressure inside an NMR sample cell, P. Natl. Acad. Sci. USA, 115, 4169–4178, https://doi.org/10.1073/pnas.1803642115, 2018c.
Chatterjee, D., Eckert, C. E., Slavov, C., Saxena, K., Fürtig, B.,
Sanders, C. R., Gurevich, V. V., Wachtveitl, J., and Schwalbe, H.: Influence
of Arrestin on the Photodecay of Bovine Rhodopsin, Angew. Chem. Int. Edit.,
54, 13555–13560, https://doi.org/10.1002/anie.201505798, 2015.
Chen, H.-Y., Ragavan, M., and Hilty, C.: Protein Folding Studied by
Dissolution Dynamic Nuclear Polarization, Angew. Chem.-Ger. Edit., 125, 9362–9365, https://doi.org/10.1002/ange.201301851, 2013.
Chen, P. R., Groff, D., Guo, J., Ou, W., Cellitti, S., Geierstanger, B. H.,
and Schultz, P. G.: A Facile System for Encoding Unnatural Amino Acids in
Mammalian Cells, Angew. Chem. Int. Edit., 48, 4052–4055,
https://doi.org/10.1002/anie.200900683, 2009.
Closs, G. L. and Closs, L. E.: Induced dynamic nuclear spin polarization in
photoreductions of benzophenone by toluene and ethylbenzene, J. Am. Chem.
Soc., 91, 4550–4552, https://doi.org/10.1021/ja01044a042, 1969a.
Closs, G. L. and Closs, L. E.: Induced dynamic nuclear spin polarization in
reactions of photochemically and thermally generated triplet
diphenylmethylene, J. Am. Chem. Soc., 91, 4549–4550,
https://doi.org/10.1021/ja01044a041, 1969b.
Concistrè, M., Gansmüller, A., McLean, N., Johannessen, O. G.,
Marín Montesinos, I., Bovee-Geurts, P. H. M., Verdegem, P., Lugtenburg,
J., Brown, R. C. D., DeGrip, W. J., and Levitt, M. H.: Double-Quantum 13C
Nuclear Magnetic Resonance of Bathorhodopsin, the First Photointermediate in
Mammalian Vision, J. Am. Chem. Soc., 130, 10490–10491,
https://doi.org/10.1021/ja803801u, 2008.
Corazza, A., Rennella, E., Schanda, P., Mimmi, M. C., Cutuil, T., Raimondi,
S., Giorgetti, S., Fogolari, F., Viglino, P., Frydman, L., Gal, M.,
Bellotti, V., Brutscher, B., and Esposito, G.: Native-unlike long-lived
intermediates along the folding pathway of the amyloidogenic protein β2-microglobulin revealed by real-time two-dimensional NMR,
J. Biol. Chem., 285, 5827–5835, https://doi.org/10.1074/jbc.M109.061168, 2010.
Corzilius, B.: High-Field Dynamic Nuclear Polarization,
Annu. Rev. Phys. Chem., 71, 143–170, https://doi.org/10.1146/annurev-physchem-071119-040222, 2020.
Craven, C. J., Derix, N. M., Hendriks, J., Boelens, R., Hellingwerf, K. J.,
and Kaptein, R.: Probing the Nature of the Blue-Shifted Intermediate of
Photoactive Yellow Protein in Solution by NMR: Hydrogen-Deuterium Exchange
Data and pH Studies, Biochemistry, 39, 14392–14399,
https://doi.org/10.1021/bi001628p, 2000.
Cusack, S.: Aminoacyl-tRNA synthetases, Curr. Opin. Struc. Biol., 3,
39–44, https://doi.org/10.1016/0959-440X(93)90199-U, 1993.
Day, I. J., Maeda, K., Paisley, H. J., Mok, K. H., and Hore, P. J.:
Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR
spectroscopy, J. Biomol. NMR, 44, 77–86,
https://doi.org/10.1007/s10858-009-9322-2, 2009.
Deiters, A., Groff, D., Ryu, Y., Xie, J., and Schultz, P. G.: A Genetically
Encoded Photocaged Tyrosine, Angew. Chem. Int. Edit., 45, 2728–2731,
https://doi.org/10.1002/anie.200600264, 2006.
de Mos, J., Jakob, A., Becker‐Baldus, J., Heckel, A., and Glaubitz, C.: Light-Induced Uncaging for Time-Resolved Observations of Biochemical Reactions by MAS NMR Spectroscopy, Chem.-Eur. J., 26, 6789–6792, https://doi.org/10.1002/chem.202000770, 2020.
Derix, N. M., Wechselberger, R. W., van der Horst, M. A., Hellingwerf, K.
J., Boelens, R., Kaptein, R., and van Nuland, N. A. J.: Lack of Negative
Charge in the E46Q Mutant of Photoactive Yellow Protein Prevents Partial
Unfolding of the Blue-Shifted Intermediate, Biochemistry, 42, 14501–14506,
https://doi.org/10.1021/bi034877x, 2003.
Dill, K. A.: Folding proteins: finding a needle in a haystack, Curr. Opin. Struc. Biol., 3, 99–103, https://doi.org/10.1016/0959-440X(93)90208-3, 1993.
Dobson, C. M.: Folding and binding, Curr. Opin. Struc. Biol., 3, 57–59,
https://doi.org/10.1016/0959-440X(93)90202-V, 1993.
Dobson, C. M. and Hore, P. J.: Kinetic studies of protein folding using NMR
spectroscopy, Nat. Struct. Biol., 5, 504–507, https://doi.org/10.1038/744, 1998.
Düx, P., Rubinstenn, G., Vuister, G. W., Boelens, R., Mulder, F. A. A.,
Hård, K., Hoff, W. D., Kroon, A. R., Crielaard, W., Hellingwerf, K. J.,
and Kaptein, R.: Solution Structure and Backbone Dynamics of the Photoactive
Yellow Protein, Biochemistry, 37, 12689–12699,
https://doi.org/10.1021/bi9806652, 1998.
Dyson, H. J. and Wright, P. E.: Peptide conformation and protein folding,
Curr. Opin. Struc. Biol., 3, 60–65,
https://doi.org/10.1016/0959-440X(93)90203-W, 1993.
Egan, D. A., Logan, T. M., Liang, H., Matayoshi, E., Fesik, S. W., and
Holzman, T. F.: Equilibrium denaturation of recombinant human FK binding
protein in urea, Biochemistry, 32, 1920–1927,
https://doi.org/10.1021/bi00059a006, 1993.
Ellis-Davies, G. C. R. and Kaplan, J. H.: A new class of photolabile
chelators for the rapid release of divalent cations: generation of caged
calcium and caged magnesium, J. Org. Chem., 53, 1966–1969,
https://doi.org/10.1021/jo00244a022, 1988.
Elove, G. A., Bhuyan, A. K., and Roder, H.: Kinetic Mechanism of Cytochrome
c Folding: Involvement of the Heme and Its Ligands, Biochemistry, 33,
6925–6935, https://doi.org/10.1021/bi00188a023, 1994.
Ernst, H., Freude, D., Mildner, T., and Wolf, I.: Laser-supported
high-temperature MAS NMR for time-resolved in situ studies of reaction steps
in heterogeneous catalysis, Solid State Nucl. Mag., 6, 147–156,
https://doi.org/10.1016/0926-2040(95)01214-1, 1996.
Etzkorn, M., Böckmann, A., Penin, F., Riedel, D., and Baldus, M.:
Characterization of Folding Intermediates of a Domain-Swapped Protein by
Solid-State NMR Spectroscopy, J. Am. Chem. Soc., 129, 169–175,
https://doi.org/10.1021/ja066469x, 2007.
Evans, P. A., Kautz, R. A., Fox, R. O., and Dobson, C. M.: A
magnetization-transfer nuclear magnetic resonance study of the folding of
staphylococcal nuclease, Biochemistry, 28, 362–370,
https://doi.org/10.1021/bi00427a050, 1989.
Farjon, J., Boisbouvier, J., Schanda, P., Pardi, A., Simorre, J.-P., and
Brutscher, B.: Longitudinal-Relaxation-Enhanced NMR Experiments for the
Study of Nucleic Acids in Solution, J. Am. Chem. Soc., 131, 8571–8577,
https://doi.org/10.1021/ja901633y, 2009.
Favier, A. and Brutscher, B.: Recovering lost magnetization: polarization
enhancement in biomolecular NMR, J. Biomol. NMR, 49, 9–15,
https://doi.org/10.1007/s10858-010-9461-5, 2011.
Feldmeier, C., Bartling, H., Riedle, E., and Gschwind, R. M.: LED based NMR
illumination device for mechanistic studies on photochemical reactions –
Versatile and simple, yet surprisingly powerful, J. Magn. Reson., 232,
39–44, https://doi.org/10.1016/j.jmr.2013.04.011, 2013.
Ferguson, D. B., Krawietz, T. R., and Haw, J. F.: Temperature-Jump MAS NMR
with a Laser Heater, J. Magn. Reson. Ser. A, 109, 273–275,
https://doi.org/10.1006/jmra.1994.1170, 1994.
Fersht, A. R. and Serrano, L.: Principles of protein stability derived from
protein engineering experiments, Curr. Opin. Struc. Biol., 3, 75–83,
https://doi.org/10.1016/0959-440X(93)90205-Y, 1993.
Franco, R., Favier, A., Schanda, P., and Brutscher, B.: Optimized fast
mixing device for real-time NMR applications, J. Magn. Reson., 281,
125–129, https://doi.org/10.1016/j.jmr.2017.05.016, 2017a.
Franco, R., Gil-Caballero, S., Ayala, I., Favier, A., and Brutscher, B.:
Probing Conformational Exchange Dynamics in a Short-Lived Protein Folding
Intermediate by Real-Time Relaxation-Dispersion NMR, J. Am. Chem. Soc.,
139, 1065–1068, https://doi.org/10.1021/jacs.6b12089, 2017b.
Frieden, C., Hoeltzli, S. D., and Ropson, I. J.: NMR and protein folding:
Equilibrium and stopped-flow studies, Protein Sci., 2, 2007–2014,
https://doi.org/10.1002/pro.5560021202, 1993.
Fürtig, B., Wenter, P., Reymond, L., Richter, C., Pitsch, S., and
Schwalbe, H.: Conformational Dynamics of Bistable RNAs Studied by
Time-Resolved NMR Spectroscopy, J. Am. Chem. Soc., 129, 16222–16229,
https://doi.org/10.1021/ja076739r, 2007a.
Fürtig, B., Buck, J., Manoharan, V., Bermel, W., Jäschke, A.,
Wenter, P., Pitsch, S., and Schwalbe, H.: Time-resolved NMR studies of RNA
folding, Biopolymers, 86, 360–383, https://doi.org/10.1002/bip.20761, 2007b.
Fürtig, B., Richter, C., Schell, P., Wenter, P., Pitsch, S., and
Schwalbe, H.: NMR-spectroscopic characterisation of phosphodiester bond
cleavage catalyzed by the minimal hammerhead ribozyme, RNA Biol., 5, 41–48,
https://doi.org/10.4161/rna.5.1.5704, 2008.
Fürtig, B., Wenter, P., Pitsch, S., and Schwalbe, H.: Probing Mechanism
and Transition State of RNA Refolding, ACS Chem. Biol., 5, 753–765,
https://doi.org/10.1021/cb100025a, 2010.
Fürtig, B., Buck, J., Richter, C., and Schwalbe, H.: Functional Dynamics
of RNA Ribozymes Studied by NMR Spectroscopy, in: Ribozymes: Methods and
Protocols, edited by: Hartig, J. S., Humana Press, Totowa, New Jersey, USA, 185–199, https://doi.org/10.1007/978-1-61779-545-9_12, 2012.
Fürtig, B., Oberhauser, E. M., Zetzsche, H., Klötzner, D.-P.,
Heckel, A., and Schwalbe, H.: Refolding through a Linear Transition State
Enables Fast Temperature Adaptation of a Translational Riboswitch,
Biochemistry, 59, 1081–1086, https://doi.org/10.1021/acs.biochem.9b01044,
2020.
Gal, M., Schanda, P., Brutscher, B., and Frydman, L.: UltraSOFAST HMQC NMR
and the Repetitive Acquisition of 2D Protein Spectra at Hz Rates, J. Am.
Chem. Soc., 129, 1372–1377, https://doi.org/10.1021/ja066915g, 2007.
Gauden, M., Grinstead, J. S., Laan, W., van Stokkum, I. H. M., Avila-Perez,
M., Toh, K. C., Boelens, R., Kaptein, R., van Grondelle, R., Hellingwerf, K.
J., and Kennis, J. T. M.: On the Role of Aromatic Side Chains in the
Photoactivation of BLUF Domains, Biochemistry, 46, 7405–7415,
https://doi.org/10.1021/bi7006433, 2007.
Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C., Burke,
P. M., Šrajer, V., Teng, T.-Y., Schildkamp, W., McRee, D. E., Moffat,
K., and Getzoff, E. D.: Structure of a Protein Photocycle Intermediate by
Millisecond Time-Resolved Crystallography, Science, 275, 1471–1475,
https://doi.org/10.1126/science.275.5305.1471, 1997.
Gołowicz, D., Kasprzak, P., Orekhov, V., and Kazimierczuk, K.: Fast
time-resolved NMR with non-uniform sampling, Prog. Nucl. Mag. Res. Sp., 116, 40–55, https://doi.org/10.1016/j.pnmrs.2019.09.003, 2020.
Gomelsky, M. and Klug, G.: BLUF: a novel FAD-binding domain involved in
sensory transduction in microorganisms, Trends Biochem. Sci., 27, 497–500,
https://doi.org/10.1016/S0968-0004(02)02181-3, 2002.
Grathwohl, C. and Wüthrich, K.: Nmr studies of the rates of proline
cis-trans isomerization in oligopeptides, Biopolymers, 20, 2623–2633,
https://doi.org/10.1002/bip.1981.360201209, 1981.
Grinstead, J. S., Avila-Perez, M., Hellingwerf, K. J., Boelens, R., and
Kaptein, R.: Light-Induced Flipping of a Conserved Glutamine Sidechain and
Its Orientation in the AppA BLUF Domain, J. Am. Chem. Soc., 128,
15066–15067, https://doi.org/10.1021/ja0660103, 2006a.
Grinstead, J. S., Hsu, S.-T. D., Laan, W., Bonvin, A. M. J. J., Hellingwerf,
K. J., Boelens, R., and Kaptein, R.: The Solution Structure of the AppA BLUF
Domain: Insight into the Mechanism of Light-Induced Signaling, ChemBioChem,
7, 187–193, https://doi.org/10.1002/cbic.200500270, 2006b.
Grün, J. T., Hennecker, C., Klötzner, D.-P., Harkness, R. W., Bessi,
I., Heckel, A., Mittermaier, A. K., and Schwalbe, H.: Conformational
Dynamics of Strand Register Shifts in DNA G-Quadruplexes, J. Am. Chem. Soc.,
142, 264–273, https://doi.org/10.1021/jacs.9b10367, 2020.
Grün, J. T., Blümler, A., Burkhart, I., Wirmer-Bartoschek, J.,
Heckel, A., and Schwalbe, H.: Unravelling the Kinetics of Spare-Tire DNA
G-Quadruplex Folding, J. Am. Chem. Soc., https://doi.org/10.1021/jacs.1c01089, online first, 2021.
Hammill, J. T., Miyake-Stoner, S., Hazen, J. L., Jackson, J. C., and Mehl,
R. A.: Preparation of site-specifically labeled fluorinated proteins for 19
F-NMR structural characterization, Nat. Protoc., 2, 2601–2607,
https://doi.org/10.1038/nprot.2007.379, 2007.
Harper, S. M., Neil, L. C., Day, I. J., Hore, P. J., and Gardner, K. H.:
Conformational Changes in a Photosensory LOV Domain Monitored by
Time-Resolved NMR Spectroscopy, J. Am. Chem. Soc., 126, 3390–3391,
https://doi.org/10.1021/ja038224f, 2004.
Harris, T., Bretschneider, C., and Frydman, L.: Dissolution DNP NMR with
solvent mixtures: Substrate concentration and radical extraction, J. Magn.
Reson., 211, 96–100, https://doi.org/10.1016/j.jmr.2011.04.001, 2011.
Haupt, C., Patzschke, R., Weininger, U., Gröger, S., Kovermann, M., and
Balbach, J.: Transient Enzyme-Substrate Recognition Monitored by Real-Time
NMR, J. Am. Chem. Soc., 133, 11154–11162, https://doi.org/10.1021/ja2010048, 2011.
Helmling, C., Klötzner, D.-P., Sochor, F., Mooney, R. A., Wacker, A.,
Landick, R., Fürtig, B., Heckel, A., and Schwalbe, H.: Life times of
metastable states guide regulatory signaling in transcriptional
riboswitches, Nat. Commun., 9, 944, https://doi.org/10.1038/s41467-018-03375-w, 2018.
Höbartner, C., Mittendorfer, H., Breuker, K., and Micura, R.: Triggering
of RNA Secondary Structures by a Functionalized Nucleobase, Angew. Chem. Int. Edit., 43, 3922–3925, https://doi.org/10.1002/anie.200460068, 2004.
Hoeltzli, S. D. and Frieden, C.: Stopped-flow NMR spectroscopy: real-time
unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate
reductase, P. Natl. Acad. Sci. USA, 92, 9318–9322,
https://doi.org/10.1073/pnas.92.20.9318, 1995.
Hoff, W. D., Dux, P., Hard, K., Devreese, B., Nugteren-Roodzant, I. M.,
Crielaard, W., Boelens, R., Kaptein, R., Van Beeumen, J., and Hellingwerf,
K. J.: Thiol ester-linked p-coumaric acid as a new photoactive prosthetic
group in a protein with rhodopsin-like photochemistry, Biochemistry, 33,
13959–13962, https://doi.org/10.1021/bi00251a001, 1994.
Hore, J. and Broadhurst, R. W.: Photo-CIDNP of biopolymers, Prog. Nucl. Mag. Res. Sp., 25, 345–402, https://doi.org/10.1016/0079-6565(93)80002-B, 1993.
Hore, P. J. and Kaptein, R.: Photochemically Induced Dynamic Nuclear
Polarization (Photo-CIDNP) of Biological Molecules Using Continuous Wave and
Time-Resolved Methods, in: NMR Spectroscopy: New Methods and Applications, American Chemical Society, 285–318,
https://doi.org/10.1021/bk-1982-0191.ch015, ISBN 978-0-8412-0723-3, 1982.
Hore, P. J., Winder, S. L., Roberts, C. H., and Dobson, C. M.: Stopped-Flow
Photo-CIDNP Observation of Protein Folding, J. Am. Chem. Soc., 119,
5049–5050, https://doi.org/10.1021/ja9644135, 1997.
Huang, G. S. and Oas, T. G.: Structure and Stability of Monomeric .lambda. Repressor: NMR Evidence for Two-State Folding, Biochemistry, 34, 3884–3892,
https://doi.org/10.1021/bi00012a003, 1995.
Jackson, J. C., Hammill, J. T., and Mehl, R. A.: Site-Specific Incorporation
of a 19F-Amino Acid into Proteins as an NMR Probe for Characterizing Protein
Structure and Reactivity, J. Am. Chem. Soc., 129, 1160–1166,
https://doi.org/10.1021/ja064661t, 2007.
Jaenicke, R.: Role of accessory proteins in protein folding, Curr. Opin. Struc. Biol., 3, 104–112, https://doi.org/10.1016/0959-440X(93)90209-4,
1993.
Jakdetchai, O., Eberhardt, P., Asido, M., Kaur, J., Kriebel, C. N., Mao, J.,
Leeder, A. J., Brown, L., Brown, R., Becker-Baldus, J., Bamann, C.,
Wachtveitl, J., and Glaubitz, C.: Probing the photointermediates of
light-driven sodium ion pump KR2 by DNP-enhanced solid-state, Sci. Adv., 7, eabf4213, https://doi.org/10.1126/sciadv.abf4213, 2021.
Jeon, J., Thurber, K. R., Ghirlando, R., Yau, W.-M., and Tycko, R.:
Application of millisecond time-resolved solid state NMR to the kinetics and
mechanism of melittin self-assembly, P. Natl. Acad. Sci. USA, 116,
16717–16722, https://doi.org/10.1073/pnas.1908006116, 2019.
Joedicke, L., Mao, J., Kuenze, G., Reinhart, C., Kalavacherla, T., Jonker,
H. R. A., Richter, C., Schwalbe, H., Meiler, J., Preu, J., Michel, H., and
Glaubitz, C.: The molecular basis of subtype selectivity of human kinin
G-protein-coupled receptors, Nat. Chem. Biol., 14, 284–290,
https://doi.org/10.1038/nchembio.2551, 2018.
Jones, D. H., Cellitti, S. E., Hao, X., Zhang, Q., Jahnz, M., Summerer, D.,
Schultz, P. G., Uno, T., and Geierstanger, B. H.: Site-specific labeling of
proteins with NMR-active unnatural amino acids, J. Biomol. NMR, 46, 89,
https://doi.org/10.1007/s10858-009-9365-4, 2009.
Jung, A., Domratcheva, T., Tarutina, M., Wu, Q., Ko, W., Shoeman, R. L.,
Gomelsky, M., Gardner, K. H., and Schlichting, I.: Structure of a bacterial
BLUF photoreceptor: Insights into blue light-mediated signal transduction,
P. Natl. Acad. Sci. USA, 102, 12350–12355,
https://doi.org/10.1073/pnas.0500722102, 2005.
Kamatari, Y. O., Yokoyama, S., Tachibana, H., and Akasaka, K.: Pressure-jump
NMR Study of Dissociation and Association of Amyloid Protofibrils, J. Mol. Biol., 349, 916–921, https://doi.org/10.1016/j.jmb.2005.04.010, 2005.
Kaptein, R.: Simple rules for chemically induced dynamic nuclear
polarization, J. Chem. Soc. Chem. Comm., 1971, 732–733,
https://doi.org/10.1039/C29710000732, 1971.
Kaptein, R.: Chemically induced dynamic nuclear polarization, Theory and
applications in mechanistic chemistry, Adv. Free Radic. Chem., 5, 319–380,
1975.
Kaptein, R.: Protein-nucleic acid interaction by NMR, Curr. Opin. Struc. Biol., 3, 50–56, https://doi.org/10.1016/0959-440X(93)90201-U, 1993.
Kaptein, R. and Oosterhoff, J. L.: Chemically induced dynamic nuclear
polarization II: (Relation with anomalous ESR spectra), Chem. Phys. Lett.,
4, 195–197, https://doi.org/10.1016/0009-2614(69)80098-9, 1969.
Kaptein, R., Dijkstra, K., and Nicolay, K.: Laser photo-CIDNP as a surface
probe for proteins in solution, Nature, 274, 293–294,
https://doi.org/10.1038/274293a0, 1978.
Kaptein, R., Nicolay, K., and Dijkstra, K.: Photo-C.I.D.N.P. in nucleic acid
bases and nucleotides, J. Chem. Soc. Chem. Comm., 1979, 1092–1094,
https://doi.org/10.1039/C39790001092, 1979.
Kaptein, R., Zuiderweg, E. R. P., Scheek, R. M., Boelens, R., and van Gunsteren, W. F.: A protein structure from nuclear magnetic resonance data:
lac Repressor headpiece, J. Mol. Biol., 182, 179–182,
https://doi.org/10.1016/0022-2836(85)90036-1, 1985.
Kaur, H., Lakatos-Karoly, A., Vogel, R., Nöll, A., Tampé, R., and
Glaubitz, C.: Coupled ATPase-adenylate kinase activity in ABC transporters,
Nat. Commun., 7, 13864, https://doi.org/10.1038/ncomms13864, 2016.
Kawakami, M. and Akasaka, K.: Microwave temperature-jump nuclear magnetic
resonance system for aqueous solutions, Rev. Sci. Instrum., 69, 3365–3369,
https://doi.org/10.1063/1.1149102, 1998.
Kemmink, J., Eker, A. P. M., and Kaptein, R.: Cidnp detected flash
photolysis of cis-syn 1,3 dimethylthymine dime, Photochem. Photobiol., 44,
137–142, https://doi.org/10.1111/j.1751-1097.1986.tb03577.x, 1986a.
Kemmink, J., Vuister, G. W., Boelens, R., Dijkstra, K., and Kaptein, R.:
Nuclear spin coherence transfer in photochemical reactions, J. Am. Chem.
Soc., 108, 5631–5633, https://doi.org/10.1021/ja00278a048, 1986b.
Keyhani, S., Goldau, T., Blümler, A., Heckel, A., and Schwalbe, H.:
Chemo-Enzymatic Synthesis of Position-Specifically Modified RNA for
Biophysical Studies including Light Control and NMR Spectroscopy, Angew. Chem. Int. Edit., 57, 12017–12021, https://doi.org/10.1002/anie.201807125,
2018.
Kiefhaber, T., Labhardt, A. M., and Baldwin, R. L.: Direct NMR evidence for
an intermediate preceding the rate-limiting step in the unfolding of
ribonuclease A, Nature, 375, 513–515, https://doi.org/10.1038/375513a0,
1995.
Kimsey, I. J., Szymanski, E. S., Zahurancik, W. J., Shakya, A., Xue, Y.,
Chu, C.-C., Sathyamoorthy, B., Suo, Z., and Al-Hashimi, H. M.: Dynamic basis
for dG ⋅ dT misincorporation via tautomerization and ionization,
Nature, 554, 195–201, https://doi.org/10.1038/nature25487, 2018.
Kitahara, R. and Akasaka, K.: Close identity of a pressure-stabilized
intermediate with a kinetic intermediate in protein folding, P. Natl. Acad. Sci. USA, 100, 3167–3172, https://doi.org/10.1073/pnas.0630309100, 2003.
Kitahara, R., Yokoyama, S., and Akasaka, K.: NMR Snapshots of a Fluctuating
Protein Structure: Ubiquitin at 30 bar–3 kbar, J. Mol. Biol., 347, 277–285, https://doi.org/10.1016/j.jmb.2005.01.052, 2005.
Korzhnev, D. M., Salvatella, X., Vendruscolo, M., Di Nardo, A. A., Davidson,
A. R., Dobson, C. M., and Kay, L. E.: Low-populated folding intermediates of
Fyn SH3 characterized by relaxation dispersion NMR, Nature, 430, 586–590,
https://doi.org/10.1038/nature02655, 2004.
Kosten, J., Binolfi, A., Stuiver, M., Verzini, S., Theillet, F.-X., Bekei,
B., van Rossum, M., and Selenko, P.: Efficient Modification of
Alpha-Synuclein Serine 129 by Protein Kinase CK1 Requires Phosphorylation of
Tyrosine 125 as a Priming Event, ACS Chem. Neurosci., 5, 1203–1208,
https://doi.org/10.1021/cn5002254, 2014.
Kremer, W., Arnold, M., Munte, C. E., Hartl, R., Erlach, M. B., Koehler, J.,
Meier, A., and Kalbitzer, H. R.: Pulsed Pressure Perturbations, an Extra
Dimension in NMR Spectroscopy of Proteins, J. Am. Chem. Soc., 133,
13646–13651, https://doi.org/10.1021/ja2050698, 2011.
Kubatova, N., Mao, J., Eckert, C. E., Saxena, K., Gande, S. L., Wachtveitl,
J., Glaubitz, C., and Schwalbe, H.: Light Dynamics of the
Retinal-Disease-Relevant G90D Bovine Rhodopsin Mutant, Angew. Chem. Int. Edit., 59, 15656–15664, https://doi.org/10.1002/anie.202003671, 2020.
Kuhn, L. T. (Ed.): Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins, in: Hyperpolarization Methods in NMR Spectroscopy,
Springer, Berlin, Heidelberg, Germany, 229–300,
https://doi.org/10.1007/128_2013_427, 2013.
Kühn, T. and Schwalbe, H.: Monitoring the Kinetics of Ion-Dependent
Protein Folding by Time-Resolved NMR Spectroscopy at Atomic Resolution, J.
Am. Chem. Soc., 122, 6169–6174, https://doi.org/10.1021/ja994212b, 2000.
Kühne, R. O., Schaffhauser, T., Wokaun, A., and Ernst, R. R.: Study of
transient chemical reactions by NMR, Fast stopped-flow fourier transform
experiments, J. Magn. Reson., 1969, 39–67,
https://doi.org/10.1016/0022-2364(79)90077-5, 1979.
Kumar, J., Sreeramulu, S., Schmidt, T. L., Richter, C., Vonck, J., Heckel,
A., Glaubitz, C., and Schwalbe, H.: Prion Protein Amyloid Formation Involves
Structural Rearrangements in the C-Terminal Domain, ChemBioChem, 11,
1208–1213, https://doi.org/10.1002/cbic.201000076, 2010.
Kuprov, I. and Hore, P. J.: Uniform illumination of optically dense NMR
samples, J. Magn. Reson., 171, 171–175,
https://doi.org/10.1016/j.jmr.2004.08.017, 2004.
Kurhanewicz, J., Vigneron, D. B., Ardenkjaer-Larsen, J. H., Bankson, J. A.,
Brindle, K., Cunningham, C. H., Gallagher, F. A., Keshari, K. R., Kjaer, A.,
Laustsen, C., Mankoff, D. A., Merritt, M. E., Nelson, S. J., Pauly, J. M.,
Lee, P., Ronen, S., Tyler, D. J., Rajan, S. S., Spielman, D. M., Wald, L.,
Zhang, X., Malloy, C. R., and Rizi, R.: Hyperpolarized 13C MRI: Path to
Clinical Translation in Oncology, Neoplasia, 21, 1–16,
https://doi.org/10.1016/j.neo.2018.09.006, 2019.
Landrieu, I., Lacosse, L., Leroy, A., Wieruszeski, J.-M., Trivelli, X.,
Sillen, A., Sibille, N., Schwalbe, H., Saxena, K., Langer, T., and Lippens,
G.: NMR Analysis of a Tau Phosphorylation Pattern, J. Am. Chem. Soc., 128,
3575–3583, https://doi.org/10.1021/ja054656+, 2006.
Lannes, L., Halder, S., Krishnan, Y., and Schwalbe, H.: Tuning the pH
Response of i-Motif DNA Oligonucleotides, ChemBioChem, 16, 1647–1656,
https://doi.org/10.1002/cbic.201500182, 2015.
Lassalle, M. W. and Akasaka, K.: The Use of High-Pressure Nuclear Magnetic
Resonance to Study Protein Folding, in: Protein Folding Protocols, edited
by: Bai, Y. and Nussinov, R., Humana Press, Totowa, New Jersey, USA, 21–38,
https://doi.org/10.1385/1-59745-189-4:21, 2006.
Lee, H. S., Spraggon, G., Schultz, P. G., and Wang, F.: Genetic
Incorporation of a Metal-Ion Chelating Amino Acid into Proteins as a
Biophysical Probe, J. Am. Chem. Soc., 131, 2481–2483,
https://doi.org/10.1021/ja808340b, 2009.
Lemke, E. A., Summerer, D., Geierstanger, B. H., Brittain, S. M., and
Schultz, P. G.: Control of protein phosphorylation with a genetically
encoded photocaged amino acid, Nat. Chem. Biol., 3, 769–772,
https://doi.org/10.1038/nchembio.2007.44, 2007.
Lieblein, A. L., Buck, J., Schlepckow, K., Fürtig, B., and Schwalbe, H.:
Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal
kinetic partitioning, Angew. Chem. Int. Edit., 51, 250–253,
https://doi.org/10.1002/anie.201104938, 2012.
Limatola, A., Eichmann, C., Jacob, R. S., Ben-Nissan, G., Sharon, M.,
Binolfi, A., and Selenko, P.: Time-Resolved NMR Analysis of Proteolytic
α-Synuclein Processing in vitro and in cellulo, Proteomics, 18,
1800056, https://doi.org/10.1002/pmic.201800056, 2018.
Liokatis, S., Dose, A., Schwarzer, D., and Selenko, P.: Simultaneous
Detection of Protein Phosphorylation and Acetylation by High-Resolution NMR
Spectroscopy, J. Am. Chem. Soc., 132, 14704–14705,
https://doi.org/10.1021/ja106764y, 2010.
Liokatis, S., Klingberg, R., Tan, S., and Schwarzer, D.: Differentially
Isotope-Labeled Nucleosomes To Study Asymmetric Histone Modification
Crosstalk by Time-Resolved NMR Spectroscopy, Angew. Chem. Int. Edit., 55,
8262–8265, https://doi.org/10.1002/anie.201601938, 2016.
Loewen, M. C., Klein-Seetharaman, J., Getmanova, E. V., Reeves, P. J.,
Schwalbe, H., and Khorana, H. G.: Solution 19F nuclear Overhauser effects in
structural studies of the cytoplasmic domain of mammalian rhodopsin, P. Natl. Acad. Sci. USA, 98, 4888–4892, https://doi.org/10.1073/pnas.051633098,
2001.
Logan, T. M., Thériault, Y., and Fesik, S. W.: Structural
Characterization of the FK506 Binding Protein Unfolded in Urea and Guanidine
Hydrochloride, J. Mol. Biol., 236, 637–648,
https://doi.org/10.1006/jmbi.1994.1173, 1994.
Luchinat, E., Barbieri, L., Cremonini, M., Nocentini, A., Supuran, C. T.,
and Banci, L.: Intracellular Binding/Unbinding Kinetics of Approved Drugs to
Carbonic Anhydrase II Observed by in-Cell NMR, ACS Chem. Biol., 15,
2792–2800, https://doi.org/10.1021/acschembio.0c00590, 2020a.
Luchinat, E., Barbieri, L., Campbell, T. F., and Banci, L.: Real-Time
Quantitative In-Cell NMR: Ligand Binding and Protein Oxidation Monitored in
Human Cells Using Multivariate Curve Resolution, Anal. Chem., 92,
9997–10006, https://doi.org/10.1021/acs.analchem.0c01677, 2020b.
Macek, P., Kerfah, R., Erba, E. B., Crublet, E., Moriscot, C., Schoehn, G.,
Amero, C., and Boisbouvier, J.: Unraveling self-assembly pathways of the
468-kDa proteolytic machine TET2, Sci. Adv., 3, e1601601,
https://doi.org/10.1126/sciadv.1601601, 2017.
Maciejko, J., Kaur, J., Becker-Baldus, J., and Glaubitz, C.:
Photocycle-dependent conformational changes in the proteorhodopsin
cross-protomer Asp–His–Trp triad revealed by DNP-enhanced MAS-NMR, P. Natl. Acad. Sci. USA, 116, 8342–8349, https://doi.org/10.1073/pnas.1817665116,
2019.
Mak-Jurkauskas, M. L., Bajaj, V. S., Hornstein, M. K., Belenky, M., Griffin,
R. G., and Herzfeld, J.: Energy transformations early in the
bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR, P. Natl. Acad. Sci. USA, 105, 883–888, https://doi.org/10.1073/pnas.0706156105,
2008.
Manoharan, V., Fürtig, B., Jäschke, A., and Schwalbe, H.:
Metal-Induced Folding of Diels-Alderase Ribozymes Studied by Static and
Time-Resolved NMR Spectroscopy, J. Am. Chem. Soc., 131, 6261–6270,
https://doi.org/10.1021/ja900244x, 2009.
Mayer, G. and Heckel, A.: Biologically Active Molecules with a “Light
Switch”, Angew. Chem. Int. Edit., 45, 4900–4921,
https://doi.org/10.1002/anie.200600387, 2006.
McCord, E. F., Morden, K. M., Pardi, A., Tinoco, I., and Boxer, S. G.:
Chemically induced dynamic nuclear polarization studies of guanosine in
nucleotides, dinucleotides, and oligonucleotides, Biochemistry, 23,
1926–1934, https://doi.org/10.1021/bi00304a006, 1984a.
McCord, E. F., Morden, K. M., Tinoco, I., and Boxer, S. G.: Chemically
induced dynamic nuclear polarization studies of yeast tRNAPhe, Biochemistry,
23, 1935–1939, https://doi.org/10.1021/bi00304a007, 1984b.
McGee, W. A. and Parkhurst, L. J.: A combined nuclear magnetic resonance and
absorbance stopped-flow apparatus for biochemical studies, Anal. Biochem.,
189, 267–273, https://doi.org/10.1016/0003-2697(90)90119-T, 1990.
Mehler, M., Eckert, C. E., Leeder, A. J., Kaur, J., Fischer, T., Kubatova,
N., Brown, L. J., Brown, R. C. D., Becker-Baldus, J., Wachtveitl, J., and
Glaubitz, C.: Chromophore Distortions in Photointermediates of
Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced
Solid-State NMR, J. Am. Chem. Soc., 139, 16143–16153,
https://doi.org/10.1021/jacs.7b05061, 2017.
Mok, K. H., Nagashima, T., Day, I. J., Jones, J. A., Jones, C. J. V.,
Dobson, C. M., and Hore, P. J.: Rapid Sample-Mixing Technique for Transient
NMR and Photo-CIDNP Spectroscopy: Applications to Real-Time Protein Folding,
J. Am. Chem. Soc., 125, 12484–12492, https://doi.org/10.1021/ja036357v,
2003.
Morikawa, K.: DNA repair enzymes, Curr. Opin. Struc. Biol., 3, 17–23,
https://doi.org/10.1016/0959-440X(93)90196-R, 1993.
Morozova, O. B. and Ivanov, K. L.: Time-Resolved Chemically Induced Dynamic
Nuclear Polarization of Biologically Important Molecules, ChemPhysChem, 20,
197–215, https://doi.org/10.1002/cphc.201800566, 2019.
Morozova, O. B. and Yurkovskaya, A. V.: Aminium Cation Radical of
Glycylglycine and its Deprotonation to Aminyl Radical in Aqueous Solution,
J. Phys. Chem. B, 112, 12859–12862, https://doi.org/10.1021/jp807149a, 2008.
Morozova, O. B., Korchak, S. E., Sagdeev, R. Z., and Yurkovskaya, A. V.:
Time-Resolved Chemically Induced Dynamic Nuclear Polarization Studies of
Structure and Reactivity of Methionine Radical Cations in Aqueous Solution
as a Function of pH, J. Phys. Chem. A, 109, 10459–10466,
https://doi.org/10.1021/jp054002n, 2005.
Morozova, O. B., Panov, M. S., Vieth, H.-M., and Yurkovskaya, A. V.: CIDNP
study of sensitized photooxidation of S-methylcysteine and
S-methylglutathione in aqueous solution, J. Photoch. Photobio. A,
321, 90–98, https://doi.org/10.1016/j.jphotochem.2016.01.013, 2016.
Mulder, F. A. A., Skrynnikov, N. R., Hon, B., Dahlquist, F. W., and Kay, L.
E.: Measurement of Slow (µs−ms) Time Scale Dynamics in Protein Side
Chains by 15N Relaxation Dispersion NMR Spectroscopy: Application to Asn and Gln Residues in a Cavity Mutant of T4 Lysozyme, J. Am. Chem. Soc., 123,
967–975, https://doi.org/10.1021/ja003447g, 2001.
Müller, D., Bessi, I., Richter, C., and Schwalbe, H.: The folding
landscapes of human telomeric RNA and DNA G-quadruplexes are markedly
different, Angew. Chem. Int. Edit., https://doi.org/10.1002/anie.202100280, online first, 2021.
Mylona, A., Theillet, F.-X., Foster, C., Cheng, T. M., Miralles, F., Bates,
P. A., Selenko, P., and Treisman, R.: Opposing effects of Elk-1 multisite
phosphorylation shape its response to ERK activation, Science, 354,
233–237, https://doi.org/10.1126/science.aad1872, 2016.
Naito, A., Nakatani, H., Imanari, M., and Akasaka, K.: State-correlated
two-dimensional NMR spectroscopy, J. Magn. Reson., 1969, 429–432,
https://doi.org/10.1016/0022-2364(90)90022-2, 1990.
Neri, D., Wider, G., and Wüthrich, K.: Complete 15N and 1H NMR
assignments for the amino-terminal domain of the phage 434 repressor in the
urea-unfolded form, P. Natl. Acad. Sci. USA, 89, 4397–4401,
https://doi.org/10.1073/pnas.89.10.4397, 1992.
Nguyen, L. M. and Roche, J.: High-pressure NMR techniques for the study of
protein dynamics, folding and aggregation, J. Magn. Reson., 277, 179–185,
https://doi.org/10.1016/j.jmr.2017.01.009, 2017.
Ni, Q. Z., Can, T. V., Daviso, E., Belenky, M., Griffin, R. G., and
Herzfeld, J.: Primary Transfer Step in the Light-Driven Ion Pump
Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear
Polarization-Enhanced Magic Angle Spinning NMR, J. Am. Chem. Soc., 140,
4085–4091, https://doi.org/10.1021/jacs.8b00022, 2018.
Niraula, T. N., Konno, T., Li, H., Yamada, H., Akasaka, K., and Tachibana,
H.: Pressure-dissociable reversible assembly of intrinsically denatured
lysozyme is a precursor for amyloid fibrils, P. Natl. Acad. Sci. USA, 101,
4089–4093, https://doi.org/10.1073/pnas.0305798101, 2004.
Nishimura, C., Dyson, H. J., and Wright, P. E.: Enhanced picture of
protein-folding intermediates using organic solvents in H/D exchange and
quench-flow experiments, P. Natl. Acad. Sci. USA, 102, 4765–4770,
https://doi.org/10.1073/pnas.0409538102, 2005.
Novakovic, M., Cousin, S. F., Jaroszewicz, M. J., Rosenzweig, R., and
Frydman, L.: Looped-PROjected SpectroscopY (L-PROSY): A simple approach to
enhance backbone/sidechain cross-peaks in 1H NMR, J. Magn. Reson., 294,
169–180, https://doi.org/10.1016/j.jmr.2018.07.010, 2018.
Novakovic, M., Olsen, G. L., Pintér, G., Hymon, D., Fürtig, B.,
Schwalbe, H., and Frydman, L.: A 300-fold enhancement of imino nucleic acid
resonances by hyperpolarized water provides a new window for probing RNA
refolding by 1D and 2D NMR, P. Natl. Acad. Sci. USA, 117, 2449–2455,
https://doi.org/10.1073/pnas.1916956117, 2020a.
Novakovic, M., Kupče, Ē., Oxenfarth, A., Battistel, M. D.,
Freedberg, D. I., Schwalbe, H., and Frydman, L.: Sensitivity enhancement of
homonuclear multidimensional NMR correlations for labile sites in proteins,
polysaccharides, and nucleic acids, Nat. Commun., 11, 5317,
https://doi.org/10.1038/s41467-020-19108-x, 2020b.
Otting, G.: Prospects for lanthanides in structural biology by NMR, J.
Biomol. NMR, 42, 1–9, https://doi.org/10.1007/s10858-008-9256-0, 2008.
Pauwels, K., Williams, T. L., Morris, K. L., Jonckheere, W., Vandersteen,
A., Kelly, G., Schymkowitz, J., Rousseau, F., Pastore, A., Serpell, L. C.,
and Broersen, K.: Structural Basis for Increased Toxicity of Pathological
Aβ42:Aβ40 Ratios in Alzheimer Disease∗, J. Biol. Chem., 287, 5650–5660, https://doi.org/10.1074/jbc.M111.264473, 2012.
Phillips, S. E. V. and Moras, D.: Protein-nucleic acid interactions, Curr. Opin. Struc. Biol., 3, 1–2, https://doi.org/10.1016/0959-440X(93)90193-O, 1993.
Pike, A. C., Brew, K., and Acharya, K. R.: Crystal structures of guinea-pig,
goat and bovine α-lactalbumin highlight the enhanced conformational
flexibility of regions that are significant for its action in lactose
synthase, Structure, 4, 691–703,
https://doi.org/10.1016/S0969-2126(96)00075-5, 1996.
Pintér, G. and Schwalbe, H.: Refolding of Cold-Denatured Barstar Induced
by Radio-Frequency Heating: A New Method to Study Protein Folding by
Real-Time NMR Spectroscopy, Angew. Chem. Int. Edit., 59, 22086–22091,
https://doi.org/10.1002/anie.202006945, 2020.
Pouwels, P. J. W., Hartman, R. F., Rose, S. D., and Kaptein, R.: CIDNP
Evidence for Reversibility of the Photosensitized Splitting of Pyrimidine
Dimers, J. Am. Chem. Soc., 116, 6967–6968,
https://doi.org/10.1021/ja00094a074, 1994.
Quant, S., Wechselberger, R. W., Wolter, M. A., Wörner, K.-H., Schell,
P., Engels, J. W., Griesinger, C., and Schwalbe, H.: Chemical synthesis of
13C-labelled monomers for the solid-phase and template controlled enzymatic
synthesis of DNA and RNA oligomers, Tetrahedron Lett., 35, 6649–6651,
https://doi.org/10.1016/S0040-4039(00)73458-7, 1994.
Radford, S. E., Dobson, C. M., and Evans, P. A.: The folding of hen lysozyme
involves partially structured intermediates and multiple pathways, Nature,
358, 302–307, https://doi.org/10.1038/358302a0, 1992.
Ragavan, M., Chen, H.-Y., Sekar, G., and Hilty, C.: Solution NMR of
Polypeptides Hyperpolarized by Dynamic Nuclear Polarization, Anal. Chem.,
83, 6054–6059, https://doi.org/10.1021/ac201122k, 2011.
Ragavan, M., Iconaru, L. I., Park, C.-G., Kriwacki, R. W., and Hilty, C.:
Real-Time Analysis of Folding upon Binding of a Disordered Protein by Using
Dissolution DNP NMR Spectroscopy, Angew. Chem. Int. Edit., 56, 7070–7073,
https://doi.org/10.1002/anie.201700464, 2017.
Ramilo, C., Appleyard, R. J., Wanke, C., Krekel, F., Amrhein, N., and Evans,
J. N. S.: Detection of the Covalent Intermediate of UDP-N-Acetylglucosamine
Enolpyruvyl Transferase by Solution-State and Time-Resolved Solid-State NMR
Spectroscopy, Biochemistry, 33, 15071–15079,
https://doi.org/10.1021/bi00254a016, 1994.
Redfield, C., Dobson, C. M., Scheck, R. M., Stob, S., and Kaptein, R.:
Surface accessibility of aromatic residues in human lysozyme using
photochemically induced dynamic nuclear polarization NMR spectroscopy, FEBS
Lett., 185, 248–252, https://doi.org/10.1016/0014-5793(85)80916-9, 1985.
Reed, M. A. C., Roberts, J., Gierth, P., Kupče, Ē., and Günther,
U. L.: Quantitative Isotopomer Rates in Real-Time Metabolism of Cells
Determined by NMR Methods, ChemBioChem, 20, 2207–2211,
https://doi.org/10.1002/cbic.201900084, 2019.
Reeves, P. J., Callewaert, N., Contreras, R., and Khorana, H. G.: Structure
and function in rhodopsin: High-level expression of rhodopsin with
restricted and homogeneous N-glycosylation by a tetracycline-inducible
N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell
line, P. Natl. Acad. Sci. USA, 99, 13419–13424,
https://doi.org/10.1073/pnas.212519299, 2002.
Reining, A., Nozinovic, S., Schlepckow, K., Buhr, F., Fürtig, B., and
Schwalbe, H.: Three-state mechanism couples ligand and temperature sensing
in riboswitches, Nature, 499, 355–359, https://doi.org/10.1038/nature12378, 2013.
Rennella, E., Cutuil, T., Schanda, P., Ayala, I., Forge, V., and Brutscher,
B.: Real-Time NMR Characterization of Structure and Dynamics in a
Transiently Populated Protein Folding Intermediate, J. Am. Chem. Soc., 134,
8066–8069, https://doi.org/10.1021/ja302598j, 2012.
Rinnenthal, J., Klinkert, B., Narberhaus, F., and Schwalbe, H.: Direct
observation of the temperature-induced melting process of the Salmonella
fourU RNA thermometer at base-pair resolution, Nucleic Acids Res., 38,
3834–3847, https://doi.org/10.1093/nar/gkq124, 2010.
Rinnenthal, J., Wagner, D., Marquardsen, T., Krahn, A., Engelke, F., and
Schwalbe, H.: A temperature-jump NMR probe setup using rf heating optimized
for the analysis of temperature-induced biomacromolecular kinetic processes,
J. Magn. Reson., 251, 84–93, https://doi.org/10.1016/j.jmr.2014.11.012,
2015.
Roche, J., Dellarole, M., Caro, J. A., Norberto, D. R., Garcia, A. E.,
Garcia-Moreno, B., Roumestand, C., and Royer, C. A.: Effect of Internal
Cavities on Folding Rates and Routes Revealed by Real-Time Pressure-Jump NMR
Spectroscopy, J. Am. Chem. Soc., 135, 14610–14618,
https://doi.org/10.1021/ja406682e, 2013.
Roche, J., Shen, Y., Lee, J. H., Ying, J., and Bax, A.: Monomeric Aβ1–40 and Aβ1–42 Peptides in Solution Adopt Very Similar
Ramachandran Map Distributions That Closely Resemble Random Coil,
Biochemistry, 55, 762–775, https://doi.org/10.1021/acs.biochem.5b01259,
2016.
Roche, J., Royer, C. A., and Roumestand, C.: Monitoring protein folding
through high pressure NMR spectroscopy, Prog. Nucl. Mag. Res. Sp.,
102–103, 15–31, https://doi.org/10.1016/j.pnmrs.2017.05.003, 2017.
Roche, J., Royer, C. A., and Roumestand, C.: Exploring
Protein Conformational Landscapes Using High-Pressure NMR, in: Methods in
Enzymology, edited by: Wand, A. J., Academic Press, 293–320,
https://doi.org/10.1016/bs.mie.2018.07.006, 2019.
Roder, H., Elöve, G. A., and Englander, S. W.: Structural
characterization of folding intermediates in cytochrome c by H-exchange
labelling and proton NMR, Nature, 335, 700–704,
https://doi.org/10.1038/335700a0, 1988.
Roder, H., Maki, K., Cheng, H., and Ramachandra Shastry, M. C.: Rapid mixing
methods for exploring the kinetics of protein folding, Methods, 34, 15–27,
https://doi.org/10.1016/j.ymeth.2004.03.003, 2004.
Rubinstenn, G., Vuister, G. W., Mulder, F. A. A., Düx, P. E., Boelens,
R., Hellingwerf, K. J., and Kaptein, R.: Structural and dynamic changes of
photoactive yellow protein during its photocycle in solution,
Nat. Struct. Biol., 5, 568–570, https://doi.org/10.1038/823, 1998.
Rubinstenn, G., Vuister, G. W., Zwanenburg, N., Hellingwerf, K. J., Boelens,
R., and Kaptein, R.: NMR Experiments for the Study of Photointermediates:
Application to the Photoactive Yellow Protein, J. Magn. Reson., 137,
443–447, https://doi.org/10.1006/jmre.1999.1705, 1999.
Ruble, B. K., Yeldell, S. B., and Dmochowski, I. J.: Caged oligonucleotides
for studying biological systems, J. Inorg. Biochem., 150, 182–188,
https://doi.org/10.1016/j.jinorgbio.2015.03.010, 2015.
Schanda, P. and Brutscher, B.: Very Fast Two-Dimensional NMR Spectroscopy
for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale
of Seconds, J. Am. Chem. Soc., 127, 8014–8015,
https://doi.org/10.1021/ja051306e, 2005.
Schanda, P. and Brutscher, B.: Hadamard frequency-encoded SOFAST-HMQC for
ultrafast two-dimensional protein NMR, J. Magn. Reson., 178, 334–339,
https://doi.org/10.1016/j.jmr.2005.10.007, 2006.
Schanda, P., Kupče, Ē., and Brutscher, B.: SOFAST-HMQC Experiments
for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins
within a Few Seconds, J. Biomol. NMR, 33, 199–211,
https://doi.org/10.1007/s10858-005-4425-x, 2005.
Schanda, P., Van Melckebeke, H., and Brutscher, B.: Speeding Up
Three-Dimensional Protein NMR Experiments to a Few Minutes, J. Am. Chem.
Soc., 128, 9042–9043, https://doi.org/10.1021/ja062025p, 2006.
Schanda, P., Forge, V., and Brutscher, B.: Protein folding and unfolding
studied at atomic resolution by fast two-dimensional NMR spectroscopy, P. Natl. Acad. Sci. USA, 104, 11257–11262,
https://doi.org/10.1073/pnas.0702069104, 2007.
Scheek, R. M., Kaptein, R., and Verhoeven, J. W.: Resolution of specific
histidine resonances in the 360 MHz 1H NMR spectrum of
glyceraldehyde-3-phosphate dehydrogenase, a 145 000 molecular weight
protein, by photo-cidnp, FEBS Lett., 107, 288–290,
https://doi.org/10.1016/0014-5793(79)80392-0, 1979.
Scheffler, J. E., Cottrell, C. E., and Berliner, L. J.: An inexpensive,
versatile sample illuminator for photo-CIDNP on any NMR spectrometer, J. Magn. Reson., 1969, 199–201,
https://doi.org/10.1016/0022-2364(85)90169-6, 1985.
Schlepckow, K. and Schwalbe, H.: Molecular Mechanism of Prion Protein
Oligomerization at Atomic Resolution, Angew. Chem. Int. Edit., 52,
10002–10005, https://doi.org/10.1002/anie.201305184, 2013.
Schlepckow, K., Wirmer, J., Bachmann, A., Kiefhaber, T., and Schwalbe, H.:
Conserved Folding Pathways of α-Lactalbumin and Lysozyme Revealed by
Kinetic CD, Fluorescence, NMR, and Interrupted Refolding Experiments, J.
Mol. Biol., 378, 686–698, https://doi.org/10.1016/j.jmb.2008.02.033, 2008.
Schlepckow, K., Fürtig, B., and Schwalbe, H.: Nonequilibrium NMR Methods
for Monitoring Protein and RNA Folding, Z. Phys. Chem., 225,
611–636, https://doi.org/10.1524/zpch.2011.0120, 2011.
Schlörb, C., Mensch, S., Richter, C., and Schwalbe, H.: Photo-CIDNP
Reveals Differences in Compaction of Non-Native States of Lysozyme, J. Am.
Chem. Soc., 128, 1802–1803, https://doi.org/10.1021/ja056757d, 2006.
Schroeder, C., Werner, K., Otten, H., Krätzig, S., Schwalbe, H., and
Essen, L.-O.: Influence of a Joining Helix on the BLUF Domain of the YcgF
Photoreceptor from Escherichia coli, ChemBioChem, 9, 2463–2473,
https://doi.org/10.1002/cbic.200800280, 2008.
Schulte, L., Mao, J., Reitz, J., Sreeramulu, S., Kudlinzki, D., Hodirnau,
V.-V., Meier-Credo, J., Saxena, K., Buhr, F., Langer, J. D., Blackledge, M.,
Frangakis, A. S., Glaubitz, C., and Schwalbe, H.: Cysteine oxidation and
disulfide formation in the ribosomal exit tunnel, Nat. Commun., 11, 5569,
https://doi.org/10.1038/s41467-020-19372-x, 2020.
Schwalbe, H., Fiebig, K. M., Buck, M., Jones, J. A., Grimshaw, S. B.,
Spencer, A., Glaser, S. J., Smith, L. J., and Dobson, C. M.: Structural and
Dynamical Properties of a Denatured Protein, Heteronuclear 3D NMR
Experiments and Theoretical Simulations of Lysozyme in 8 M Urea,
Biochemistry, 36, 8977–8991, https://doi.org/10.1021/bi970049q, 1997.
Seyfried, P., Heinz, M., Pintér, G., Klötzner, D.-P., Becker, Y.,
Bolte, M., Jonker, H. R. A., Stelzl, L. S., Hummer, G., Schwalbe, H., and
Heckel, A.: Optimal Destabilization of DNA Double Strands by
Single-Nucleobase Caging, Chem.-Eur. J., 24, 17568–17576,
https://doi.org/10.1002/chem.201804040, 2018.
Shortle, D.: Denatured states of proteins and their roles in folding and
stability, Curr. Opin. Struc. Biol., 3, 66–74,
https://doi.org/10.1016/0959-440X(93)90204-X, 1993.
Spraul, M. D., Hofmann, M., and Schwalbe, H. D.: NMR measuring cell and
method for rapidly mixing at least two reaction fluids in the NMR measuring
cell, Patent number DE19548977C1, 1997.
Sprenger, W. W., Hoff, W. D., Armitage, J. P., and Hellingwerf, K. J.: The
eubacterium Ectothiorhodospira halophila is negatively phototactic, with a
wavelength dependence that fits the absorption spectrum of the photoactive
yellow protein, J. Bacteriol., 175, 3096–3104,
https://doi.org/10.1128/jb.175.10.3096-3104.1993, 1993.
Stehle, J., Silvers, R., Werner, K., Chatterjee, D., Gande, S., Scholz, F.,
Dutta, A., Wachtveitl, J., Klein-Seetharaman, J., and Schwalbe, H.:
Characterization of the Simultaneous Decay Kinetics of Metarhodopsin States
II and III in Rhodopsin by Solution-State NMR Spectroscopy, Angew. Chem. Int. Edit., 53, 2078–2084, https://doi.org/10.1002/anie.201309581, 2014.
Steinert, H., Sochor, F., Wacker, A., Buck, J., Helmling, C., Hiller, F.,
Keyhani, S., Noeske, J., Grimm, S., Rudolph, M. M., Keller, H., Mooney, R.
A., Landick, R., Suess, B., Fürtig, B., Wöhnert, J., and Schwalbe,
H.: Pausing guides RNA folding to populate transiently stable RNA structures
for riboswitch-based transcription regulation, eLife, 6, e21297,
https://doi.org/10.7554/eLife.21297, 2017.
Steitz, T. A.: DNA- and RNA-dependent DNA polymerases, Curr. Opin. Struc. Biol., 3, 31–38, https://doi.org/10.1016/0959-440X(93)90198-T, 1993.
Stob, S. and Kaptein, R.: Photo-Cidnp of the Amino Acids,
Photochem. Photobiol., 49, 565–577,
https://doi.org/10.1111/j.1751-1097.1989.tb08425.x, 1989.
Theillet, F.-X., Rose, H. M., Liokatis, S., Binolfi, A., Thongwichian, R.,
Stuiver, M., and Selenko, P.: Site-specific NMR mapping and time-resolved
monitoring of serine and threonine phosphorylation in reconstituted kinase
reactions and mammalian cell extracts, Nat. Protoc., 8, 1416–1432,
https://doi.org/10.1038/nprot.2013.083, 2013.
Udgaonkar, J. B. and Baldwin, R. L.: NMR evidence for an early framework
intermediate on the folding pathway of ribonuclease A, Nature, 335,
694–699, https://doi.org/10.1038/335694a0, 1988.
Ullrich, S. J., Hellmich, U. A., Ullrich, S., and Glaubitz, C.: Interfacial
enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR,
Nat. Chem. Biol., 7, 263–270, https://doi.org/10.1038/nchembio.543, 2011.
Van Nuland, N. A. J., Forge, V., Balbach, J., and Dobson, C. M.: Real-Time
NMR Studies of Protein Folding, Accounts Chem. Res., 31, 773–780,
https://doi.org/10.1021/ar970079l, 1998.
Vuister, G. W., Boelens, R., Padilla, A., Kleywegt, G. J., and Kaptein, R.:
Assignment strategies in homonuclear three-dimensional proton NMR spectra of
proteins, Biochemistry, 29, 1829–1839, https://doi.org/10.1021/bi00459a024, 1990.
Ward, H. R. and Lawler, R. G.: Nuclear magnetic resonance emission and
enhanced absorption in rapid organometallic reactions, J. Am. Chem. Soc.,
89, 5518–5519, https://doi.org/10.1021/ja00997a078, 1967.
Welegedara, A. P., Adams, L. A., Huber, T., Graham, B., and Otting, G.:
Site-Specific Incorporation of Selenocysteine by Genetic Encoding as a
Photocaged Unnatural Amino Acid, Bioconjugate Chem., 29, 2257–2264,
https://doi.org/10.1021/acs.bioconjchem.8b00254, 2018.
Wenter, P., Fürtig, B., Hainard, A., Schwalbe, H., and Pitsch, S.:
Kinetics of Photoinduced RNA Refolding by Real-Time NMR Spectroscopy, Angew. Chem. Int. Edit., 44, 2600–2603, https://doi.org/10.1002/anie.200462724, 2005.
Wenter, P., Fürtig, B., Hainard, A., Schwalbe, H., and Pitsch, S.: A
Caged Uridine for the Selective Preparation of an RNA Fold and Determination
of its Refolding Kinetics by Real-Time NMR, ChemBioChem, 7, 417–420,
https://doi.org/10.1002/cbic.200500468, 2006.
Werner, K., Richter, C., Klein-Seetharaman, J., and Schwalbe, H.: Isotope
labeling of mammalian GPCRs in HEK293 cells and characterization of the
C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy,
J. Biomol. NMR, 40, 49–53, https://doi.org/10.1007/s10858-007-9205-3, 2008.
Wilson, I. A. and Stanfield, R. L.: Antibody-antigen interactions, Curr. Opin. Struc. Biol., 3, 113–118,
https://doi.org/10.1016/0959-440X(93)90210-C, 1993.
Wirmer, J., Kühn, T., and Schwalbe, H.: Millisecond Time Resolved
Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced
Refolding Pathway of Bovine α-Lactalbumin, Angew. Chem.-Ger. Edit., 113, 4378–4381, https://doi.org/10.1002/1521-3757(20011119)113:22<4378::AID-ANGE4378>3.0.CO;2-G, 2001.
Wolberger, C.: Transcription factor structure and DNA binding, Curr. Opin. Struc. Biol., 3, 3–10, https://doi.org/10.1016/0959-440X(93)90194-P, 1993.
Wu, N., Deiters, A., Cropp, T. A., King, D., and Schultz, P. G.: A
Genetically Encoded Photocaged Amino Acid, J. Am. Chem. Soc., 126,
14306–14307, https://doi.org/10.1021/ja040175z, 2004.
Wu, Q. and Gardner, K. H.: Structure and Insight into Blue Light-Induced
Changes in the BlrP1 BLUF Domain, Biochemistry, 48, 2620–2629,
https://doi.org/10.1021/bi802237r, 2009.
Wu, Q., Ko, W.-H., and Gardner, K. H.: Structural Requirements for Key
Residues and Auxiliary Portions of a BLUF Domain, Biochemistry, 47,
10271–10280, https://doi.org/10.1021/bi8011687, 2008.
Xie, J. and Schultz, P. G.: A chemical toolkit for proteins – an expanded
genetic code, Nat. Rev. Mol. Cell Bio., 7, 775–782,
https://doi.org/10.1038/nrm2005, 2006.
Xie, J., Liu, W., and Schultz, P. G.: A Genetically Encoded Bidentate,
Metal-Binding Amino Acid, Angew. Chem. Int. Edit., 46, 9239–9242,
https://doi.org/10.1002/anie.200703397, 2007.
Yamasaki, K., Obara, Y., Hasegawa, M., Tanaka, H., Yamasaki, T., Wakuda, T.,
Okada, M., and Kohzuma, T.: Real-Time NMR Monitoring of Protein-Folding
Kinetics by a Recycle Flow System for Temperature Jump, Anal. Chem., 85,
9439–9443, https://doi.org/10.1021/ac401579e, 2013.
Yonath, A. and Franceschi, F.: Structural aspects of ribonucleoprotein
interactions in ribosomes, Curr. Opin. Struc. Biol., 3, 45–49,
https://doi.org/10.1016/0959-440X(93)90200-5, 1993.
Zeeb, M. and Balbach, J.: Protein folding studied by real-time NMR
spectroscopy, Methods, 34, 65–74,
https://doi.org/10.1016/j.ymeth.2004.03.014, 2004.
Zhao, Q., Fujimiya, R., Kubo, S., Marshall, C. B., Ikura, M., Shimada, I.,
and Nishida, N.: Real-Time In-Cell NMR Reveals the Intracellular Modulation
of GTP-Bound Levels of RAS, Cell Rep., 32, 108074,
https://doi.org/10.1016/j.celrep.2020.108074, 2020.
Zirak, P., Penzkofer, A., Schiereis, T., Hegemann, P., Jung, A., and
Schlichting, I.: Photodynamics of the small BLUF protein BlrB from
Rhodobacter sphaeroides, J. Photoch. Photobio. B, 83, 180–194,
https://doi.org/10.1016/j.jphotobiol.2005.12.015, 2006.
Short summary
The folding, refolding and misfolding of biomacromolecules including proteins, DNA and RNA is an important area of biophysical research to understand functional and disease states of a cell. NMR spectroscopy provides detailed insight, with both high time and atomic resolution. These experiments put stringent requirements on signal-to-noise for often irreversible folding reactions. The review describes methodological approaches and highlights key applications.
The folding, refolding and misfolding of biomacromolecules including proteins, DNA and RNA is an...
Special issue