Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-343-2021
https://doi.org/10.5194/mr-2-343-2021
Research article
 | 
28 May 2021
Research article |  | 28 May 2021

Heteronuclear and homonuclear radio-frequency-driven recoupling

Evgeny Nimerovsky, Kai Xue, Kumar Tekwani Movellan, and Loren B. Andreas

Related authors

Heteronuclear and Homonuclear Finite Pulse Radio Frequency Driven Recoupling
Evgeny Nimerovsky, Kai Xue, Kumar Tekwani Movellan, and Loren Andreas
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2020-30,https://doi.org/10.5194/mr-2020-30, 2020
Revised manuscript not accepted
Short summary

Related subject area

Field: Solid-state NMR | Topic: Theory
Performance of the cross-polarization experiment in conditions of radiofrequency field inhomogeneity and slow to ultrafast magic angle spinning (MAS)
Andrej Šmelko, Jan Blahut, Bernd Reif, and Zdeněk Tošner
Magn. Reson., 4, 199–215, https://doi.org/10.5194/mr-4-199-2023,https://doi.org/10.5194/mr-4-199-2023, 2023
Short summary
Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021,https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary
Residual dipolar line width in magic-angle spinning proton solid-state NMR
Matías Chávez, Thomas Wiegand, Alexander A. Malär, Beat H. Meier, and Matthias Ernst
Magn. Reson., 2, 499–509, https://doi.org/10.5194/mr-2-499-2021,https://doi.org/10.5194/mr-2-499-2021, 2021
Short summary
Origin of the residual line width under frequency-switched Lee–Goldburg decoupling in MAS solid-state NMR
Johannes Hellwagner, Liam Grunwald, Manuel Ochsner, Daniel Zindel, Beat H. Meier, and Matthias Ernst
Magn. Reson., 1, 13–25, https://doi.org/10.5194/mr-1-13-2020,https://doi.org/10.5194/mr-1-13-2020, 2020
Short summary

Cited articles

Andreas, L. B., Le Marchand, T., Jaudzems, K., and Pintacuda, G.: High-resolution proton-detected NMR of proteins at very fast MAS, J. Magn. Reson., 253, 36–49, https://doi.org/10.1016/j.jmr.2015.01.003, 2015. 
Aucoin, D., Camenares, D., Zhao, X., Jung, J., Sato, T., and Smith, S. O.: High resolution 1H MAS RFDR NMR of biological membranes, J. Magn. Reson., 197, 77–86, https://doi.org/10.1016/j.jmr.2008.12.009, 2009. 
Bak, M., Rasmussen, J. T., and Nielsen, N. C.: SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy, J. Magn. Reson., 147, 296–330, https://doi.org/10.1006/jmre.2000.2179, 2000. 
Bennett, A. E., Griffin, R. G., Ok, J. H., and Vega, S.: Chemical shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange, J. Chem. Phys., 96, 8624–8627, https://doi.org/10.1063/1.462267, 1992. 
Bennett, A. E., Rienstra, C. M., Griffiths, J. M., Zhen, W., Lansbury, P. T., and Griffin, R. G.: Homonuclear radio frequency-driven recoupling in rotating solids, J. Chem. Phys., 108, 9463–9479, https://doi.org/10.1063/1.476420, 1998. 
Download
Short summary
The RFDR sequence has been widely used for homonuclear recoupling. The paper describes a heteronuclear version of RFDR. HET-RFDR sequence transfers longitudinal polarization between heteronuclear pairs by applying RFDR on two channels simultaneously. We perform an operator analysis of HET-RFDR and RFDR. Such an analysis allows for better understanding of the influence of offsets and paths of magnetization transfers for both these experiments, as well as the crucial role of XY phase cycling.