Brinkmann, A. and Levitt, M. H.: Symmetry principles in the nuclear magnetic
resonance of spinning solids: Heteronuclear recoupling by generalized
Hartmann–Hahn sequences, J. Chem. Phys., 115, 357–384,
https://doi.org/10.1063/1.1377031, 2001.
Brinkmann, A., Schmedt auf der Günne, J., and Levitt, M. H.: Homonuclear
Zero-Quantum Recoupling in Fast Magic-Angle Spinning Nuclear Magnetic
Resonance, J. Magn. Reson., 156, 79–96, https://doi.org/10.1006/jmre.2002.2525, 2002.
Carravetta, M., Edén, M., Zhao, X., Brinkmann, A., and Levitt, M. H.:
Symmetry principles for the design of radiofrequency pulse sequences in the
nuclear magnetic resonance of rotating solids, Chem. Phys. Lett., 321,
205–215, https://doi.org/10.1016/S0009-2614(00)00340-7, 2000.
Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K., and
Oschkinat, H.: Structure of a protein determined by solid-state
magic-angle-spinning NMR spectroscopy, Nature, 420, 99–102,
https://doi.org/10.1038/nature01070, 2002.
Colvin, M. T., Silvers, R., Frohm, B., Su, Y., Linse, S., and Griffin, R.
G.: High Resolution Structural Characterization of
Aβ42 Amyloid
Fibrils by Magic Angle Spinning NMR, J. Am. Chem. Soc., 137, 7509–7518,
https://doi.org/10.1021/jacs.5b03997, 2015.
Daskalov, A., Martinez, D., Coustou, V., Mammeri, N. E., Berbon, M.,
Andreas, L. B., Bardiaux, B., Stanek, J., Noubhani, A., Kauffmann, B., Wall,
J. S., Pintacuda, G., Saupe, S. J., Habenstein, B., and Loquet, A.:
Structural and molecular basis of cross-seeding barriers in amyloids, P. Natl. Acad. Sci. USA, 118, e2014085118, https://doi.org/10.1073/pnas.2014085118, 2021.
Fritz, M., Kraus, J., Quinn, C. M., Yap, G. P. A., Struppe, J., Sergeyev, I.
V., Gronenborn, A. M., and Polenova, T.: Measurement of Accurate
Interfluorine Distances in Crystalline Organic Solids: A High-Frequency
Magic Angle Spinning NMR Approach, J. Phys. Chem. B, 123, 10680–10690,
https://doi.org/10.1021/acs.jpcb.9b08919, 2019.
Fung, B. M., Khitrin, A. K., and Ermolaev, K.: An Improved Broadband
Decoupling Sequence for Liquid Crystals and Solids, J. Magn. Reson., 142,
97–101, https://doi.org/10.1006/jmre.1999.1896, 2000.
Gelenter, M. D. and Hong, M.: Efficient
15N−13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination, J. Phys. Chem. B, 122, 8367–8379, https://doi.org/10.1021/acs.jpcb.8b06400, 2018.
Gelenter, M. D., Dregni, A. J., and Hong, M.: Pulsed Third-Spin-Assisted
Recoupling NMR for Obtaining Long-Range
13C−13C and
15N−13C Distance Restraints, J. Phys. Chem. B, 124, 7138–7151,
https://doi.org/10.1021/acs.jpcb.0c04574, 2020.
Grohe, K., Nimerovsky, E., Singh, H., Vasa, S. K., Söldner, B., Voegeli,
B., Rienstra, C. M., and Linser, R.: Exact distance measurements for
structure and dynamics in solid proteins by fast-magic-angle-spinning NMR,
Chem. Commun., 55, 7899–7902, https://doi.org/10.1039/C9CC02317H, 2019.
Gullion, T. and Schaefer, J.: Rotational-echo double-resonance NMR, J. Magn.
Reson., 81, 196–200, https://doi.org/10.1016/0022-2364(89)90280-1, 1989.
Gullion, T. and Vega, S.: A simple magic angle spinning NMR experiment for
the dephasing of rotational echoes of dipolar coupled homonuclear spin
pairs, Chem. Phys. Lett., 194, 423–428,
https://doi.org/10.1016/0009-2614(92)86076-T, 1992.
Gullion, T., Baker, D. B., and Conradi, M. S.: New, compensated Carr-Purcell
sequences, J. Magn. Reson., 89, 479–484, https://doi.org/10.1016/0022-2364(90)90331-3, 1990.
Haeberlen, U. and Waugh, J. S.: Coherent Averaging Effect in Magnetic
Resonance, Phys. Rev., 175, 453–467, https://doi.org/10.1103/PhysRev.175.453, 1968.
Hartmann, S. R. and Hahn, E. L.: Nuclear Double Resonance in the Rotating
Frame, Phys. Rev., 128, 2042–2053, https://doi.org/10.1103/PhysRev.128.2042, 1962.
Hediger, S., Meier, B. H., Kurur, N. D., Bodenhausen, G., and Ernst, R. R.:
NMR cross polarization by adiabatic passage through the Hartmann—Hahn
condition (APHH), Chem. Phys. Lett., 223, 283–288, https://doi.org/10.1016/0009-2614(94)00470-6, 1994.
Hellwagner, J., Wili, N., Ibáñez, L. F., Wittmann, J. J., Meier, B.
H., and Ernst, M.: Transient effects in
π-pulse sequences in MAS
solid-state NMR, J. Magn. Reson., 287, 65–73, https://doi.org/10.1016/j.jmr.2017.12.015, 2018.
Hing, A. W., Vega, S., and Schaefer, J.: Transferred-echo double-resonance
NMR, J. Magn. Reson., 96, 205–209, https://doi.org/10.1016/0022-2364(92)90305-Q, 1992.
Hou, G., Byeon, I.-J. L., Ahn, J., Gronenborn, A. M., and Polenova, T.:
1H–13C/1H–15N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences
Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and
Organic Solids, J. Am. Chem. Soc., 133, 18646–18655,
https://doi.org/10.1021/ja203771a, 2011a.
Hou, G., Yan, S., Sun, S., Han, Y., Byeon, I.-J. L., Ahn, J., Concel, J.,
Samoson, A., Gronenborn, A. M., and Polenova, T.: Spin Diffusion Driven by
R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy
in MAS NMR of Biological and Organic Solids, J. Am. Chem. Soc., 133,
3943–3953, https://doi.org/10.1021/ja108650x, 2011b.
Hou, G., Yan, S., Trébosc, J., Amoureux, J.-P., and Polenova, T.:
Broadband homonuclear correlation spectroscop
y driven by combined R2nv
sequences under fast magic angle spinning for NMR structural analysis of
organic and biological solids, J. Magn. Reson., 232, 18–30,
https://doi.org/10.1016/j.jmr.2013.04.009, 2013.
Ishii, Y.:
13C−13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination, J. Chem. Phys., 114, 8473–8483,
https://doi.org/10.1063/1.1359445, 2001.
Jain, M. G., Lalli, D., Stanek, J., Gowda, C., Prakash, S., Schwarzer, T.
S., Schubeis, T., Castiglione, K., Andreas, L. B., Madhu, P. K., Pintacuda,
G., and Agarwal, V.: Selective
1H−1H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR, J. Phys. Chem. Lett., 8, 2399–2405, https://doi.org/10.1021/acs.jpclett.7b00983, 2017.
Jaroniec, C. P., Filip, C., and Griffin, R. G.: 3D TEDOR NMR Experiments for
the Simultaneous Measurement of Multiple Carbon-Nitrogen Distances in
Uniformly 13C,15N-Labeled Solids, J. Am. Chem. Soc., 124, 10728–10742,
https://doi.org/10.1021/ja026385y, 2002.
Ji, Y., Liang, L., Guo, C., Bao, X., Polenova, T., and Hou, G.: Zero-Quantum
Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR
Spectroscopy, Acta Phys.-Chim. Sin., 36, 1905029–1905034, 2020.
Linser, R., Bardiaux, B., Andreas, L. B., Hyberts, S. G., Morris, V. K.,
Pintacuda, G., Sunde, M., Kwan, A. H., and Wagner, G.: Solid-State NMR
Structure Determination from Diagonal-Compensated, Sparsely
Nonuniform-Sampled 4D Proton–Proton Restraints, J. Am. Chem. Soc., 136,
11002–11010, https://doi.org/10.1021/ja504603g, 2014.
Maricq, M. M.: Application of average hamiltonian theory to the NMR of
solids, Phys. Rev. B, 25, 6622–6632, https://doi.org/10.1103/PhysRevB.25.6622, 1982.
Mehring, M.: Principles of High Resolution NMR in Solids, 2nd edn.,
Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-68756-3, 1983.
Meier, B. H. and Earl, W. L.: Excitation of multiple quantum transitions
under magic angle spinning conditions: Adamantane, J. Chem. Phys., 85,
4905–4911, https://doi.org/10.1063/1.451726, 1986.
Messinger, R. J., Ménétrier, M., Salager, E., Boulineau, A.,
Duttine, M., Carlier, D., Ateba Mba, J.-M., Croguennec, L., Masquelier, C.,
Massiot, D., and Deschamps, M.: Revealing Defects in Crystalline Lithium-Ion
Battery Electrodes by Solid-State NMR: Applications to LiVPO4F, Chem.
Mater., 27, 5212–5221, https://doi.org/10.1021/acs.chemmater.5b01234, 2015.
Metz, G., Wu, X. L., and Smith, S. O.: Ramped-Amplitude Cross Polarization
in Magic-Angle-Spinning NMR, J. Magn. Reson. A, 110, 219–227,
https://doi.org/10.1006/jmra.1994.1208, 1994.
Movellan, K. T., Najbauer, E. E., Pratihar, S., Salvi, M., Giller, K.,
Becker, S., and Andreas, L. B.: Alpha protons as NMR probes in deuterated
proteins, J. Biomol. NMR, 73, 81–91, https://doi.org/10.1007/s10858-019-00230-y, 2019.
Nielsen, N. C., Strassø, L. A., and Nielsen, A. B.: Dipolar Recoupling,
in: Solid State NMR, edited by: Chan, J. C. C., Springer, Berlin,
Heidelberg, 1–45, https://doi.org/10.1007/128_2011_129, 2011.
Nimerovsky, E. and Goldbourt, A.: Insights into the spin dynamics of a large
anisotropy spin subjected to long-pulse irradiation under a modified REDOR
experiment, J. Magn. Reson., 225, 130–41, https://doi.org/10.1016/j.jmr.2012.09.015, 2012.
Nishiyama, Y., Malon, M., Ishii, Y., and Ramamoorthy, A.: 3D
chemical shift correlation experiment utilizing an RFDR-based
mixing period at 100kHz MAS, J. Magn. Reson., 244, 1–5, https://doi.org/10.1016/j.jmr.2014.04.008, 2014a.
Nishiyama, Y., Zhang, R., and Ramamoorthy, A.: Finite-pulse radio frequency
driven recoupling with phase cycling for 2D
correlation at ultrafast MAS frequencies, J. Magn. Reson., 243, 25–32, https://doi.org/10.1016/j.jmr.2014.03.004, 2014b.
Ok, J. H., Spencer, R. G. S., Bennett, A. E., and Griffin, R. G.:
Homonuclear correlation spectroscopy in rotating solids, Chem. Phys. Lett.,
197, 389–395, https://doi.org/10.1016/0009-2614(92)85790-H, 1992.
Olejniczak, E. T., Vega, S., and Griffin, R. G.: Multiple pulse NMR in
rotating solids, J. Chem. Phys., 81, 4804–4817,
https://doi.org/10.1063/1.447506, 1984.
Pandey, M. K. and Nishiyama, Y.: A one-dimensional solid-state NMR approach
for
overtone correlation through
mixing under fast MAS, Phys. Chem. Chem. Phys., 20, 25849–25853,
https://doi.org/10.1039/C8CP05000G, 2018.
Pandey, M. K., Vivekanandan, S., Yamamoto, K., Im, S., Waskell, L., and
Ramamoorthy, A.: Proton-detected 2D radio frequency driven recoupling
solid-state NMR studies on micelle-associated cytochrome-b
5, J. Magn.
Reson., 242, 169–179, https://doi.org/10.1016/j.jmr.2014.02.016, 2014.
Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D.,
Delaglio, F., and Tycko, R.: A structural model for Alzheimer's -amyloid
fibrils based on experimental constraints from solid state NMR, P. Natl.
Acad. Sci. USA, 99, 16742–16747, https://doi.org/10.1073/pnas.262663499, 2002.
Roos, M., Mandala, V. S., and Hong, M.: Determination of Long-Range
Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven
19F−19F Dipolar Recoupling NMR, J. Phys. Chem. B, 122, 9302–9313, https://doi.org/10.1021/acs.jpcb.8b06878, 2018.
Rovnyak, D.: Tutorial on analytic theory for cross-polarization in solid
state NMR, Concepts Magn. Reson., 32A, 254–276, https://doi.org/10.1002/cmr.a.20115, 2008.
Saalwächter, K.: Robust NMR Approaches for the Determination of
Homonuclear Dipole–Dipole Coupling Constants in Studies of Solid Materials
and Biomolecules, ChemPhysChem, 14, 3000–3014,
https://doi.org/10.1002/cphc.201300254, 2013.
Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R.: An improved
sequence for broadband decoupling: WALTZ-16, J. Magn. Reson., 52, 335–338, https://doi.org/10.1016/0022-2364(83)90207-X, 1983.
Shen, M., Hu, B., Lafon, O., Trébosc, J., Chen, Q., and Amoureux, J.-P.:
Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with
(XY8)4
1 super-cycling for homo-nuclear correlations in very high magnetic
fields at fast and ultra-fast MAS frequencies, J. Magn. Reson., 223,
107–119, https://doi.org/10.1016/j.jmr.2012.07.013, 2012.
Shi, C., Fricke, P., Lin, L., Chevelkov, V., Wegstroth, M., Giller, K.,
Becker, S., Thanbichler, M., and Lange, A.: Atomic-resolution structure of
cytoskeletal bactofilin by solid-state NMR, Sci. Adv., 1,
https://doi.org/10.1126/sciadv.1501087, 2015.
Slichter, C. P.: Principles of Magnetic Resonance, 3rd edn., Springer-Verlag,
Berlin Heidelberg, https://doi.org/10.1007/978-3-662-09441-9, 1990.
Sun, B. Q., Costa, P. R., and Griffin, R. G.: Heteronuclear Polarization
Transfer by Radiofrequency-Driven Dipolar Recoupling Under Magic-Angle
Spinning, J. Magn. Reson. A, 112, 191–198, https://doi.org/10.1006/jmra.1995.1031, 1995.
Szeverenyi, N. M., Sullivan, M. J., and Maciel, G. E.: Observation of spin
exchange by two-dimensional fourier transform
13C cross
polarization-magic-angle spinning, J. Magn. Reson., 47, 462–475,
https://doi.org/10.1016/0022-2364(82)90213-X, 1982.
Takegoshi, K., Nakamura, S., and Terao, T.:
13C−1H dipolar-assisted rotational resonance in magic-angle spinning NMR, Chem. Phys. Lett., 344, 631–637, https://doi.org/10.1016/S0009-2614(01)00791-6, 2001.
Tang, M., Berthold, D. A., and Rienstra, C. M.: Solid-State NMR of a Large
Membrane Protein by Paramagnetic Relaxation Enhancement, J. Phys. Chem.
Lett., 2, 1836–1841, https://doi.org/10.1021/jz200768r, 2011.
Thakur, R. S., Kurur, N. D., and Madhu, P. K.: Swept-frequency two-pulse
phase modulation for heteronuclear dipolar decoupling in solid-state NMR,
Chem. Phys. Lett., 426, 459–463, https://doi.org/10.1016/j.cplett.2006.06.007, 2006.
Tycko, R. and Dabbagh, G.: Measurement of nuclear magnetic dipole–dipole
couplings in magic angle spinning NMR, Chem. Phys. Lett., 173, 461–465,
https://doi.org/10.1016/0009-2614(90)87235-J, 1990.
Wong, K. M., Wang, Y., Seroski, D. T., Larkin, G. E., Mehta, A. K., Hudalla,
G. A., Hall, C. K., and Paravastu, A. K.: Molecular complementarity and
structural heterogeneity within co-assembled peptide
β-sheet
nanofibers, Nanoscale, 12, 4506–4518, https://doi.org/10.1039/C9NR08725G, 2020.
Wu, X. L. and Zilm, K. W.: Cross Polarization with High-Speed Magic-Angle
Spinning, J. Magn. Reson. A, 104, 154–165, https://doi.org/10.1006/jmra.1993.1203, 1993.
Zhang, R., Nishiyama, Y., Sun, P., and Ramamoorthy, A.: Phase cycling
schemes for finite-pulse-RFDR MAS solid state NMR experiments, J. Magn.
Reson., 252, 55–66, https://doi.org/10.1016/j.jmr.2014.12.010, 2015.
Zhang, R., Mroue, K. H., and Ramamoorthy, A.: Proton-Based Ultrafast Magic
Angle Spinning Solid-State NMR Spectroscopy, Acc. Chem. Res., 50,
1105–1113, https://doi.org/10.1021/acs.accounts.7b00082, 2017.
Zhang, Z., Chen, Y., and Yang, J.: Band-selective heteronuclear dipolar
recoupling with dual back-to-back pulses in rotating solids, J. Magn.
Reson., 272, 46–52, https://doi.org/10.1016/j.jmr.2016.09.003, 2016.
Zhang, Z., Oss, A., Org, M.-L., Samoson, A., Li, M., Tan, H., Su, Y., and
Yang, J.: Selectively Enhanced 1H–1H Correlations in Proton-Detected
Solid-State NMR under Ultrafast MAS Conditions, J. Phys. Chem. Lett., 11,
8077–8083, https://doi.org/10.1021/acs.jpclett.0c02412, 2020.
Zheng, Z., Qiang, W., and Weliky, D. P.: Investigation of finite-pulse
radiofrequency-driven recoupling methods for measurement of intercarbonyl
distances in polycrystalline and membrane-associated HIV fusion peptide
samples, Magn. Reson. Chem., 45, S247–S260,
https://doi.org/10.1002/mrc.2160, 2007.
Zhou, D. H. and Rienstra, C. M.: High-performance solvent suppression for
proton detected solid-state NMR, J. Magn. Reson., 192, 167–172,
https://doi.org/10.1016/j.jmr.2008.01.012, 2008.
Zhou, D. H., Nieuwkoop, A. J., Berthold, D. A., Comellas, G., Sperling, L.
J., Tang, M., Shah, G. J., Brea, E. J., Lemkau, L. R., and Rienstra, C. M.:
Solid-state NMR analysis of membrane proteins and protein aggregates by
proton detected spectroscopy, J. Biomol. NMR, 54, 291–305,
https://doi.org/10.1007/s10858-012-9672-z, 2012.
Zinke, M., Fricke, P., Lange, S., Zinn-Justin, S., and Lange, A.:
Protein-Protein Interfaces Probed by Methyl Labeling and Proton-Detected
Solid-State NMR Spectroscopy, ChemPhysChem, 19, 2457–2460,
https://doi.org/10.1002/cphc.201800542, 2018.