Blanes, S., Casas, F., Oteo, J. A., and Ros, J.: The Magnus expansion and some of its applications, Phys. Rep., 470, 151–238, 2009. a
Böckmann, A., Ernst, M., and Meier, B. H.: Spinning proteins, the faster, the better?, J. Magn. Reson., 253, 71–79, 2015. a
Brunner, E.: Limitations of resolution in the 1H magic angle spinning nuclear magnetic resonance spectroscopy of zeolite. Further results, Faraday Trans., 89, 165–5, 1993. a
Brunner, E.: Residual dipolar couplings in protein NMR, Concepts Magn.
Reson., 13, 238–259, 2001. a
Brunner, E., Fenzke, D., Freude, D., and Pfeifer, H.: The Influence of
Homonuclear Dipolar Interaction on the Residual Linewidths of Mas
NMR-Spectra, Chem. Phys. Lett., 169, 591–594, 1990a. a
Brunner, E., Freude, D., Gerstein, B. C., and Pfeifer, H.: Residual Linewidths of NMR-Spectra of Spin-1/2 Systems Under Magic-Angle Spinning, J. Magn. Reson., 90, 90–99, 1990b.
a,
b
Chavez, M., Wiegand, T., Malär, A. A., Meier, B. H., and Ernst, M.: Residual Dipolar Linewidth in Magic-Angle Spinning Proton Solid-State NMR, ETH Zurich [data set],
https://doi.org/10.3929/ethz-b-000490555, 2021.
a
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J.,
Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., and Barnes, A. B.:
Magic angle spinning spheres, Science Advances, 4, eaau1540,
https://doi.org/10.1126/sciadv.aau1540, 2018.
a
Cheng, V. B., Suzukawa, H. H., and Wolfsberg, M.: Investigations of a
Nonrandom Numerical-Method for Multidimensional Integration, J. Chem. Phys.,
59, 3992–3999, 1973.
a,
b,
c
Duma, L., Abergel, D., Tekely, P., and Bodenhausen, G.: Proton chemical shift anisotropy measurements of hydrogen-bonded functional groups by fast
magic-angle spinning solid-state NMR spectroscopy, Chem. Commun., 44,
2361–2363, 2008. a
Gao, C., Judge, P. T., Sesti, E. L., Price, L. E., Alaniva, N., Saliba, E. P., Albert, B. J., Soper, N. J., Chen, P. H., and Barnes, A. B.: Four millimeter spherical rotors spinning at 28 kHz with double-saddle coils for cross polarization NMR, J. Magn. Reson., 303, 1–6, 2019. a
Haeberlen, U.: High resolution NMR in solids: selective averaging, Academic Press, New York, USA, 1976. a
Hahn, E. L.: Spin Echoes, Phys. Rev., 80, 580–594, 1950. a
Hellwagner, J., Grunwald, L., Ochsner, M., Zindel, D., Meier, B. H., and Ernst, M.: Origin of the residual line width under frequency-switched
Lee–Goldburg decoupling in MAS solid-state NMR, Magn. Reson., 1,
13–25, 2020. a
Iuga, A. and Brunner, E.: Phosphorylated amino acids: Model compounds for
solid-state
31P NMR spectroscopic studies of proteins, Magn. Reson.
Chem., 42, 369–372, 2004. a
Lin, Y.-L., Cheng, Y.-S., Ho, C.-I., Guo, Z.-H., Huang, S.-J., Org, M.-L., Oss, A., Samoson, A., and Chan, J. C. C.: Preparation of fibril nuclei of
beta-amyloid peptides in reverse micelles, Chem. Commun., 54,
10459–10462, 2018. a
Lowe, I. J.: Free Induction Decays of Rotating Solids, Phys. Rev. Lett., 2,
285–287, 1959.
a,
b
Malär, A. A., Smith-Penzel, S., Camenisch, G.-M., Wiegand, T., Samoson, A., Böckmann, A., Ernst, M., and Meier, B. H.: Quantifying proton NMR
coherent linewidth in proteins under fast MAS conditions: a second moment
approach, Phys. Chem. Chem. Phys., 21, 18850–18865, 2019.
a,
b
Malär, A. A., Völker, L. A., Cadalbert, R, Lecoq, L, Ernst, M., Böckmann, A., Meier, B. H., and Wiegand, T.: Temperature-dependent solid-state NMR proton chemical-shift values and hydrogen bonding, J. Phys. Chem. B, 125, 6222–6230, 2021. a
Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B.,
Durand, J. O., Bujoli, B., Gan, Z., and Hoatson, G.: Modelling one- and
two-dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70–76,
2002. a
Medeiros-Silva, J., Mance, D., Daniëls, M., Jekhmane, S., Houben, K.,
Baldus, M., and Weingarth, M.:
1H-Detected Solid-State NMR Studies of
Water-Inaccessible Proteins In Vitro and In Situ, Angew. Chem. Int. Ed., 55, 13606–13610, 2016. a
Mehring, M.: Principles of high resolution NMR in solids, Springer-Verlag, Berlin, Germany, 1983.
a,
b,
c
Moutzouri, P., Paruzzo, F. M., Simões de Almeida, B., Stevanato, G., and
Emsley, L.: Homonuclear Decoupling in
1H NMR of Solids by Remote
Correlation, Angew. Chem. Int. Ed. Engl., 59, 6235–6238, 2020.
a,
b
Nishiyama, Y.: Fast magic-angle sample spinning solid-state NMR at
60–100 kHz for natural abundance samples, Solid State Nucl. Magn.
Reson., 78, 24–36, 2016.
a,
b
Nishiyama, Y., Malon, M., Ishii, Y., and Ramamoorthy, A.: 3D 15N/15N/1H
chemical shift correlation experiment utilizing an RFDR-based 1H/1H mixing
period at 100 kHz MAS, J. Magn. Reson., 244, 1–5, 2014. a
Penzel, S., Oss, A., Org, M.-L., Samoson, A., Böckmann, A., Ernst, M., and Meier, B. H.: Spinning faster: protein NMR at MAS frequencies up to
126 kHz, J. Biomol. NMR., 73, 19–29, 2019.
a,
b,
c
Potrzebowski, M. J., Assfeld, X., Ganicz, K., Olejniczak, S., Cartier, A.,
Gardiennet, C., and Tekely, P.: An experimental and theoretical study of the
13C and
31P chemical shielding tensors in solid O-phosphorylated
amino acids, J. Am. Chem. Soc., 125, 4223–4232, 2003. a
Samoson, A.: H-MAS, J. Magn. Reson., 306, 167–172, 2019. a
Schanda, P. and Ernst, M.: Studying dynamics by magic-angle spinning
solid-state NMR spectroscopy: Principles and applications to biomolecules,
Prog. NMR Spectr., 96, 1–46, 2016. a
Schledorn, M., Malär, A. A., Torosyan, A., Penzel, S., Klose, D., Oss, A., Org, M.-L., Wang, S., Lecoq, L., Cadalbert, R., Samoson, A., Böckmann, A., and Meier, B. H.: Protein NMR Spectroscopy at 150 kHz Magic-Angle Spinning Continues To Improve Resolution and Mass Sensitivity, ChemBioChem, 21, 2540–2548, 2020.
a,
b,
c
Scholz, I., van Beek, J. D., and Ernst, M.: Operator-based Floquet theory in
solid-state NMR, Solid State Nucl. Magn. Reson., 37, 39–59, 2010.
a,
b
Schubeis, T., Le Marchand, T., Andreas, L. B., and Pintacuda, G.: 1H
magic-angle spinning NMR evolves as a powerful new tool for membrane
proteins, J. Magn. Reson., 287, 140–152, 2018. a
Smith, S. A., Levante, T. O., Meier, B. H., and Ernst, R. R.:
Computer-Simulations in Magnetic-Resonance – an Object-Oriented Programming
Approach, J. Magn. Reson. Ser. A, 106, 75–105, 1994. a
Stanek, J., Andreas, L. B., Jaudzems, K., Cala, D., Lalli, D., Bertarello, A., Schubeis, T., Akopjana, I., Kotelovica, S., Tars, K., Pica, A., Leone, S., Picone, D., Xu, Z.-Q., Dixon, N. E., Martinez, D., Berbon, M., El Mammeri, N., Noubhani, A., Saupe, S., Habenstein, B., Loquet, A., and Pintacuda, G.: NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils, Angew. Chem. Int. Ed. Engl., 55, 15504–15509, 2016. a
Sternberg, U., Witter, R., Kuprov, I., Lamley, J. M., Oss, A., Lewandowski,
J. R., and Samoson, A.:
1H line width dependence on MAS speed in solid
state NMR – Comparison of experiment and simulation, J. Magn.
Reson., 291, 32–39, 2018.
a,
b,
c,
d
Stöppler, D., Macpherson, A., Smith-Penzel, S., Basse, N., Lecomte, F.,
Deboves, H., Taylor, R. D., Norman, T., Porter, J., Waters, L. C., Westwood,
M., Cossins, B., Cain, K., White, J., Griffin, R., Prosser, C., Kelm, S.,
Sullivan, A. H., Fox, D., Carr, M. D., Henry, A., Taylor, R., Meier, B. H.,
Oschkinat, H., and Lawson, A. D.: Insight into small molecule binding to the
neonatal Fc receptor by X-ray crystallography and 100 kHz
magic-angle-spinning NMR, PLoS Biology, 16, e2006192,
https://doi.org/10.1371/journal.pbio.2006192, 2018.
a
Struppe, J., Quinn, C. M., Lu, M., Wang, M., Hou, G., Lu, X., Kraus, J.,
Andreas, L. B., Stanek, J., Lalli, D., Lesage, A., Pintacuda, G., Maas,
W. E., Gronenborn, A. M., and Polenova, T.: Expanding the horizons for
structural analysis of fully protonated protein assemblies by NMR
spectroscopy at MAS frequencies above 100 kHz, Solid State Nucl.
Magn. Reson., 87, 117–125, 2017. a
Vasa, S. K., Singh, H., Grohe, K., and Linser, R.: Assessment of a Large
Enzyme-Drug Complex by Proton-Detected Solid-State NMR Spectroscopy without
Deuteration, Angew. Chem. Int. Ed. Engl., 58, 5758–5762, 2019. a