Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-2-607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva
Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany
Mazin Jouda
Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany
Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany
Related authors
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Paul Jelden, Magnus Dam, Jens Hänisch, Martin Börner, Sören Lehmkuhl, Bernhard Holtzapfel, Tabea Arndt, and Jan Gerrit Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-10, https://doi.org/10.5194/mr-2025-10, 2025
Preprint under review for MR
Short summary
Short summary
High critical field superconductors are less sensitive to magnet quenching, providing even higher fields. They can be cooled using cryogens like Helium, but simply using an oscillating pressure field. Using solar or wind energy, the cheap cooling promises magnetic resonance at high field, low operating cost, and renewable energy. Such magnets, made compact, can be used to prepolarise chemical samples, to be analysed in benchtop NMR systems, with better nuclear magnetic resonance spectra.
Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer
Magn. Reson., 6, 199–210, https://doi.org/10.5194/mr-6-199-2025, https://doi.org/10.5194/mr-6-199-2025, 2025
Short summary
Short summary
We present a technology that allows for the direct writing of conductive tracks on cylindrical substrates as receiver coils for magnetic resonance (MR) experiments. The structures are written with high precision, which has two benefits. First, the real structures behave very similarly to the simulated designs, reducing the component variation; second, this allows for the writing of coils apart from the fairly straightforward solenoidal coils, thereby making complex designs available for MR microcoils.
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025, https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24, https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
Short summary
The magic angle spinning (MAS) technique of solid state NMR requires samples to be rapidly rotated within a magnetic field. The rotation rate speed record is 150 kHz, or 9 million RPM, and hence MAS turbines hold the world rotation speed record for extended objects. The containers holding the samples are made of the strongest materials known, to be able to withstand the excessive centrifugal forces. To overcome the speed limit, this paper delineates a way to do so using an optical tweezers setup
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Sagar Wadhwa, Mazin Jouda, Yongbo Deng, Omar Nassar, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 225–236, https://doi.org/10.5194/mr-1-225-2020, https://doi.org/10.5194/mr-1-225-2020, 2020
Short summary
Short summary
Magnetic resonance detectors require a high degree of precision to be useful. Their design must e.g. carefully weigh field strength and field homogeneity to find the best compromise. Here we show that inverse computational design is a viable method to find such a
trade-off. Apart from the electromagnetic field solution, the simulation program also determines the boundary between insulating and conducting material and moves the material boundaries around until the compromise is best satisfied.
Cited articles
Bendsoe, M. P. and Kikuchi, N.: Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comput. Method. Appl. M., 71, 197–224, https://doi.org/10.1016/0045-7825(88)90086-2, 1988. a
Betti, E.: Nuovo Cimento, 7 and 8, 5–21, 69–97, 158–180, 1872. a
Chandrana, C., Neal, J., Platts, D., Morgan, B., and Nath, P.: Automatic alignment of multiple magnets into Halbach cylinders, J. Magn. Magn. Mater., 381, 396–400, https://doi.org/10.1016/j.jmmm.2015.01.011, 2015. a, b, c
Chang, W.-H., Chen, J.-H., and Hwang, L.-P.: Single-sided mobile NMR with a Halbach magnet, Magn. Reson. Imaging, 24, 1095–1102, https://doi.org/10.1016/j.mri.2006.04.005, 2006. a, b
Chang, W.-H., Chung, C.-Y., Chen, J.-H., Hwang, D. W., Hsu, C.-H., Yao, C., and Hwang, L.-P.: Simple mobile single-sided NMR apparatus with a relatively homogeneous B0 distribution, Magn. Reson. Imaging, 29, 869–876,
https://doi.org/10.1016/j.mri.2011.02.026, 2011. a
Chen, C. H., Gong, W., Walmer, M. H., Liu, S., and Kuhl, G. E.: Behavior of some heavy and light rare earth-cobalt magnets at high temperature, J. Appl. Phys., 91, 8483, https://doi.org/10.1063/1.1453324, 2002. a
Chonlathep, K., Sakamoto, T., Sugahara, K., and Kondo, Y.: A simple and low-cost permanent magnet system for NMR, J. Magn. Reson., 275, 114–119,
https://doi.org/10.1016/j.jmr.2016.12.010, 2017. a
Cooley, C. Z., Haskell, M. W., Cauley, S. F., Sappo, C., Lapierre, C. D., Ha, C. G., Stockmann, J. P., and Wald, L. L.: Design of Sparse Halbach Magnet Arrays for Portable MRI Using a Genetic Algorithm, IEEE T. Magn., 54, https://doi.org/10.1109/TMAG.2017.2751001, 2018. a, b
Danieli, E., Perlo, J., Blümich, B., and Casanova, F.: Small Magnets
for Portable NMR Spectrometers, Angew. Chem. Int. Edit., 49, 4133–4135, https://doi.org/10.1002/anie.201000221, 2010. a, b
Gill, P. E., Murray, W., and Saunders, M. A.: SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM Rev., 12, 99–131, https://doi.org/10.1137/S0036144504446096, 2002. a
Halbach, K.: Design of permanent multipole magnets with oriented 75
rare earth cobalt material, Nucl. Instrum. Methods, 169, 1–10,
https://doi.org/10.1016/0029-554X(80)90094-4, 1980. a, b
Hoult, D. and Richards, R.: The signal-to-noise ratio of the nuclear
magnetic resonance experiment, J. Magn. Reson., 24, 71–85, https://doi.org/10.1016/0022-2364(76)90233-X, 1976. a
Hugon, C., D’Amico, F., Aubert, G., and Sakellariou, D.: Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: Theory and experimental developments of a simple portable magnet, J. Magn. Reson., 205, 75–85, https://doi.org/10.1016/j.jmr.2010.04.003, 2010. a, b, c, d, e, f, g, h, i
Insinga, A., Bahl, C., Bjoerk, R., and Smith, A.: Performance of Halbach magnet arrays with finite coercivity, J. Magn. Magn. Mater., 407, 369–376,
https://doi.org/10.1016/j.jmmm.2016.01.076, 2016a. a
Insinga, A. R., Bjørk, R., Smith, A., and Bahl, C. R. H.: Globally Optimal Segmentation of Permanent-Magnet Systems, Phys. Rev. Appl., 5, 064014,
https://doi.org/10.1103/PhysRevApplied.5.064014, 2016b. a
Jaeger, H. M. and Nagel, S. R.: Physics of the Granular State, Science, 255, 1523–1531, https://doi.org/10.1126/science.255.5051.1523, 1992. a
Jeans, J.: The Mathematical Theory of Electricity and Magnetism,
Cambridge U. Press, Cambridge, England, https://doi.org/10.1038/078537a0, 1908. a, b
Katter, M.: Angular dependence of the demagnetization stability
of sintered Nd-Fe-B magnets, IEEE T. Magn., 41, 3853–3855, https://doi.org/10.1109/TMAG.2005.854872, 2005. a, b
Korvink, J. G., MacKinnon, N., Badilita, V., and Jouda, M.: “Small is beautiful” in NMR, J. Magn. Reson., 306, 112–117,
https://doi.org/10.1016/j.jmr.2019.07.012, 2019. a
Kumada, M., Fujisawa, T., Hirao, Y., Endo, M., Aoki, M., Kohda, T., Bolshakova, I., and Holyaka, R.: Development of 4 tesla permanent
magnet, in: Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA, vol. 5, https://doi.org/10.1109/PAC.2001.988064, 2001. a
Landeghem, M. V., Danieli, E., Perlo, J., Blümich, B., and Casanova, F.: Low-gradient single-sided NMR sensor for oneshot profiling of human skin, J. Magn. Reson., 215, 74–84, https://doi.org/10.1016/j.jmr.2011.12.010, 2012. a, b
Luo, S., Xiao, L., Li, X., Liao, G., Liu, H., Wang, Z., Sun, Z., Liu, W., and Xu, Y.: New magnet array design for downhole NMR azimuthal measurement, Magn. Reson. Imaging, 56, 168–173, https://doi.org/10.1016/j.mri.2018.09.027, 2018. a
Manz, B., Coy, A., Dykstra, R., Eccles, C., Hunter, M., Parkinson, B., and Callaghan, P.: A mobile one-sided NMR sensor with a homogeneous magnetic field: The NMR-MOLE, J. Magn. Reson., 183, 25–31, https://doi.org/10.1016/j.jmr.2006.07.017, 2006. a, b
Marble, A. E., Mastikhin, I. V., Colpitts, B. G., and Balcom, B. J.: A constant gradient unilateral magnet for nearsurface MRI profiling, J. Magn. Reson., 183, 228–234, https://doi.org/10.1016/j.jmr.2006.08.013, 2006. a, b
Marble, A. E., Mastikhin, I. V., Colpitts, B. G., and Balcom, B. J.: A compact permanent magnet array with a remote homogeneous field, J. Magn. Reson., 186, 100–104, https://doi.org/10.1016/j.jmr.2007.01.020, 2007. a
Martinek, G. and Kronmüller, H.: Influence of grain orientation of the coercive field in Fe-Nd-B permanent magnets, J. Magn. Magn. Mater., 86, 177–183, https://doi.org/10.1016/0304-8853(90)90119-B, 1990. a
Mehedi, M., Jiang, Y., Suri, P. K., Flannigan, D. J., and Wang, J.-P.:
Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy, J. Phys. D Appl. Phys., 50, 37LT01, https://doi.org/10.1088/1361-6463/aa8130, 2017. a
Mikhlin, S. G.: Variational Methods in Mathematical Physics, Pergamon
Press, Oxford, England, https://doi.org/10.1002/zamm.19650450439, 1964. a
Paulsen, J. L., Bouchard, L. S., Graziani, D., Blümich, B., and Pines, A.: Volume-selective magnetic resonance imaging using an adjustable, single-sided, portable sensor, P. Natl. Acad. Sci. USA, 105, 20601–20604,
https://doi.org/10.1073/pnas.0811222106, 2008. a, b
Perlo, J., Casanova, F., and Blümich, B.: Single-sided sensor for
high-resolution NMR spectroscopy, J. Magn. Reson., 180, 274–279, https://doi.org/10.1016/j.jmr.2006.03.004, 2006.
a
Rahmatallah, S., Li, Y., Seton, H., Mackenzie, I., Gregory, J., and Aspden, R.: NMR detection and one-dimensional imaging using the inhomogeneous magnetic field of a portable single-sided magnet, J. Magn. Reson., 173, 23–28, https://doi.org/10.1016/j.jmr.2004.11.014, 2005. a, b
Seleznyova, K., Strugatsky, M., and Kliava, J.: Modelling the magnetic dipole, Eur. J. Phys., 37, 025203, https://doi.org/10.1088/0143-0807/37/2/025203, 2016. a
Staudacher, T., Shi, F., Pezzagna, S., Meijer, J., Du, J., Meriles, C. A., Reinhard, F., and Wrachtrup, J.: Nuclear Magnetic Resonance Spectroscopy on a (5-nm)3 Sample Volume, Science, 339, 561–563, https://doi.org/10.1126/science.1231675, 2013. a
Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM J. Optimiz., 12, 555–573,
https://doi.org/10.1137/S1052623499362822, 2002. a
Tayler, M. C. and Sakellariou, D.: Low-cost, pseudo-Halbach dipole magnets for NMR, J. Magn. Reson., 277, 143–148, https://doi.org/10.1016/j.jmr.2017.03.001, 2017. a
Topgaard, D., Martin, R. W., Sakellariou, D., Meriles, C. A., and Pines, A.: “Shim pulses” for NMR spectroscopy and imaging, P. Natl. Acad. Sci. USA, 101, 17576–17581, https://doi.org/10.1073/pnas.0408296102, 2004. a
Utsuzawa, S. and Fukushima, E.: Unilateral NMR with a barrel magnet, J. Magn. Reson., 282, 104–113, https://doi.org/10.1016/j.jmr.2017.07.006, 2017. a
Windt, C. W., Soltner, H., van Dusschoten, D., and Blümler, P.: A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF, J. Magn. Reson., 208, 27–33, https://doi.org/10.1016/j.jmr.2010.09.020, 2011. a
Zakotnik, M. and Tudor, C.: Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with designer properties that exceed those of starting materials, Waste Manage., 44, 48–54,
https://doi.org/10.1016/j.wasman.2015.07.041, 2015. a, b
Short summary
We use the theory of magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. This leads to self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic modelling of complex material behaviours.
We use the theory of magnetostatic reciprocity to compute manufacturable solutions of complex...