Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-607-2021
https://doi.org/10.5194/mr-2-607-2021
Research article
 | 
04 Aug 2021
Research article |  | 04 Aug 2021

Magnetostatic reciprocity for MR magnet design

Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink

Related authors

Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021,https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Instrumentation
A portable NMR platform with arbitrary phase control and temperature compensation
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022,https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution
Sven Jovanovic, P. Philipp M. Schleker, Matthias Streun, Steffen Merz, Peter Jakes, Michael Schatz, Rüdiger-A. Eichel, and Josef Granwehr
Magn. Reson., 2, 265–280, https://doi.org/10.5194/mr-2-265-2021,https://doi.org/10.5194/mr-2-265-2021, 2021
Short summary
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields
Timothy J. Keller and Thorsten Maly
Magn. Reson., 2, 117–128, https://doi.org/10.5194/mr-2-117-2021,https://doi.org/10.5194/mr-2-117-2021, 2021
Short summary
ArduiTaM: accurate and inexpensive NMR auto tune and match system
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020,https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary

Cited articles

Bendsoe, M. P. and Kikuchi, N.: Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comput. Method. Appl. M., 71, 197–224, https://doi.org/10.1016/0045-7825(88)90086-2, 1988. a
Betti, E.: Nuovo Cimento, 7 and 8, 5–21, 69–97, 158–180, 1872. a
Chandrana, C., Neal, J., Platts, D., Morgan, B., and Nath, P.: Automatic alignment of multiple magnets into Halbach cylinders, J. Magn. Magn. Mater., 381, 396–400, https://doi.org/10.1016/j.jmmm.2015.01.011, 2015. a, b, c
Chang, W.-H., Chen, J.-H., and Hwang, L.-P.: Single-sided mobile NMR with a Halbach magnet, Magn. Reson. Imaging, 24, 1095–1102, https://doi.org/10.1016/j.mri.2006.04.005, 2006. a, b
Chang, W.-H., Chung, C.-Y., Chen, J.-H., Hwang, D. W., Hsu, C.-H., Yao, C., and Hwang, L.-P.: Simple mobile single-sided NMR apparatus with a relatively homogeneous B0 distribution, Magn. Reson. Imaging, 29, 869–876, https://doi.org/10.1016/j.mri.2011.02.026, 2011. a
Download
Short summary
We use the theory of magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. This leads to self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic modelling of complex material behaviours.