Balu, A. M., Duckett, S. B., and Luque, R.: Para-hydrogen induced
polarisation effects in liquid phase hydrogenations catalysed by supported
metal nanoparticles, Dalton T., 5074–5076, https://doi.org/10.1039/B906449D, 2009.
Barskiy, D. A., Salnikov, O. G., Kovtunov, K. V., and Koptyug, I. V.: NMR
signal enhancement for hyperpolarized fluids continuously generated in
hydrogenation reactions with parahydrogen, J. Phys. Chem. A, 119, 996–1006,
https://doi.org/10.1021/jp510572d, 2015.
Bond, G. C.: Metal-catalysed reactions of hydrocarbons, 1st edn., edited by:
Twigg, M. V. and Spencer, M. S., Springer, New York, USA, 2005.
Bowers, C. R.: Sensitivity Enhancement Utilizing Parahydrogen, in: Encyclopedia of Magnetic Resonance, edited by: Harris, R. K. and Wasylishen, R. L., John Wiley, Chichester, https://doi.org/10.1002/9780470034590.emrstm0489, 2007.
Bowers, C. R. and Weitekamp, D. P.: Parahydrogen and synthesis allow
dramatically enhanced nuclear alignment, J. Am. Chem. Soc., 109, 5541–5542,
https://doi.org/10.1021/ja00252a049, 1987.
Burueva, D. B., Kovtunov, K. V., Bukhtiyarov, A. V., Barskiy, D. A.,
Prosvirin, I. P., Mashkovsky, I. S., Baeva, G. N., Bukhtiyarov, V. I.,
Stakheev, A. Y., and Koptyug, I. V.: Selective single-site Pd-In
hydrogenation catalyst for production of enhanced magnetic resonance signals
using parahydrogen, Chem.-Eur. J., 24, 2547–2553,
https://doi.org/10.1002/chem.201705644, 2018.
Cavallari, E., Carrera, C., Di Matteo, G., Bondar, O., Aime, S., and Reineri,
F.: In-vitro NMR studies of prostate tumor cell metabolism by means of
hyperpolarized [1-
13C]pyruvate obtained using the PHIP-SAH
method, Front. Oncol., 10, 497, https://doi.org/10.3389/fonc.2020.00497, 2020.
Curl, R. F., Kasper, J. V. V., Pitzer, K. S., and Sathianandan, K.: Spin
statistics isomerization in methane, J. Chem. Phys., 44, 4636, https://doi.org/10.1063/1.1726686, 1966.
Du, Y., Behera, R., Maligal-Ganesh, R. V., Chen, M., Chekmenev, E. Y.,
Huang, W., and Bowers, C. R.: Cyclopropane hydrogenation vs isomerization
over Pt and
Pt−Sn intermetallic nanoparticle catalysts: a parahydrogen
spin-labeling study, J. Phys. Chem. C, 124, 8304–8309,
https://doi.org/10.1021/acs.jpcc.0c02493, 2020.
Duckett, S. B. and Mewis, R. E.: Application of parahydrogen induced
polarization techniques in NMR spectroscopy and imaging, Accounts Chem. Res.,
45, 1247–1257, https://doi.org/10.1021/ar2003094, 2012.
Duckett, S. B. and Sleigh, C. J.: Applications of the parahydrogen
phenomenon: a chemical perspective, Prog. Nucl. Mag. Res. Sp., 34,
71–92, https://doi.org/10.1016/S0079-6565(98)00027-2, 1999.
Green, R. A., Adams, R. W., Duckett, S. B., Mewis, R. E., Williamson, D. C.,
and Green, G. G. R.: The theory and practice of hyperpolarization in
magnetic resonance using parahydrogen, Prog. Nucl. Mag. Res. Sp.,
67, 1–48, https://doi.org/10.1016/j.pnmrs.2012.03.001, 2012.
Gutmann, T., Ratajczyk, T., Xu, Y., Breitzke, H., Grunberg, A.,
Dillenberger, S., Bommerich, U., Trantzschel, T., Bernarding, J., and
Buntkowsky, G.: Understanding the leaching properties of heterogenized
catalysts: A combined solid-state and PHIP NMR study,
Solid State Nucl. Mag., 38, 90–96, https://doi.org/10.1016/j.ssnmr.2011.03.001, 2010.
Hama, T. and Watanabe, N.: Surface processes on interstellar amorphous solid
water: adsorption, diffusion, tunneling reactions, and nuclear-spin
conversion, Chem. Rev., 113, 8783–8839, https://doi.org/10.1021/cr4000978, 2013.
Hama, T., Kouchi, A., and Watanabe, N.: The ortho-to-para ratio of water
molecules desorbed from ice made from para-water monomers at 11 K,
Astrophys. J. Lett., 857, L13, https://doi.org/10.3847/2041-8213/aabc0c, 2018.
Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M., and Sykes, E.
C. H.: Single-atom alloy catalysis, Chem. Rev., 120, 12044–12088,
https://doi.org/10.1021/acs.chemrev.0c00078, 2020.
Hily-Blant, P., Faure, A., Rist, C., Pineau des Forêts, G., and Flower,
D. R.: Modelling the molecular composition and nuclear-spin chemistry of
collapsing pre-stellar sources, Mon. Not. R. Astron. Soc., 477, 4454–4472,
https://doi.org/10.1093/mnras/sty881, 2018.
Hu, M.-G., Liu, Y., Nichols, M. A., Zhu, L., Quéméner, G., Dulieu,
O., and Ni, K.-K.: Nuclear spin conservation enables state-to-state control
of ultracold molecular reactions, Nat. Chem., https://doi.org/10.1038/s41557-020-00610-0, 2020.
Iali, W., Rayner, P. J., and Duckett, S. B.: Using parahydrogen to
hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and
carbonates, Science Advances, 4, eaao6250, https://doi.org/10.1126/sciadv.aao6250,
2018.
Jannin, S., Dumez, J.-N., Giraudeau, P., and Kurzbach, D.: Application and
methodology of dissolution dynamic nuclear polarization in physical,
chemical and biological contexts, J. Magn. Reson., 305, 41–50,
https://doi.org/10.1016/j.jmr.2019.06.001, 2019.
Kaltschnee, L., Jagtap, A. P., McCormick, J., Wagner, S., Bouchard, L.-S.,
Utz, M., Griesinger, C., and Glöggler, S.: Hyperpolarization of Amino
Acids in Water Utilizing Parahydroge
n on a Rhodium
Nanocatalyst, Chem.-Eur. J., 25, 11031–11035,
https://doi.org/10.1002/chem.201902878, 2019.
Kanamori, H., Dehghani, Z. T., Mizoguchi, A., and Endo, Y.: Detection of
microwave transitions between ortho and para states in a free isolated
molecule, Phys. Rev. Lett., 119, 173401,
https://doi.org/10.1103/PhysRevLett.119.173401, 2017.
Kidd, B. E., Gesiorski, J. L., Gemeinhardt, M. E., Shchepin, R. V.,
Kovtunov, K. V., Koptyug, I. V., Chekmenev, E. Y., and Goodson, B. M.: Facile
removal of homogeneous SABRE catalysts for purifying hyperpolarized
metronidazole, a potential hypoxia sensor, J. Phys. Chem. C, 122,
16848–16852, https://doi.org/10.1021/acs.jpcc.8b05758, 2018.
Kilaj, A., Gao, H., Rösch, D., Rivero, U., Küpper, J., and Willitsch,
S.: Observation of different reactivities of para and ortho-water towards
trapped diazenylium ions, Nat. Commun., 9, 2096, https://doi.org/10.1038/s41467-018-04483-3, 2018.
Knecht, S., Blanchard, J. W., Barskiy, D., Cavallari, E., Dagys, L., van Dyke, E., Tsukanov, M., Bliemel, B., Münnemann, K., Aime, S., Reineri, F., Levitt, M. H., Buntkowsky, G., Pines, A., Blümler, P., Budker, D., and Eills, J.: Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution, P. Natl. Acad. Sci. USA, 118, e2025383118, https://doi.org/10.1073/pnas.2025383118, 2021.
Kovtunov, K. V., Zhivonitko, V. V., Skovpin, I. V., Barskiy, D. A., and
Koptyug, I. V.: Parahydrogen-induced polarization in heterogeneous catalytic
processes, Top. Curr. Chem., 338, 123–180,
https://doi.org/10.1007/128_2012_371, 2013.
Kovtunov, K. V., Truong, M. L., Barskiy, D. A., Koptyug, I. V., Coffey, A.
M., Waddell, K. W., and Chekmenev, E. Y.: Long-lived spin states for
low-field hyperpolarized gas MRI, Chem.-Eur. J., 20, 14629–14632,
https://doi.org/10.1002/chem.201405063, 2014.
Kovtunov, K. V., Salnikov, O. G., Zhivonitko, V. V., Skovpin, I. V.,
Bukhtiyarov, V. I., and Koptyug, I. V.: Catalysis and nuclear magnetic
resonance signal enhancement with parahydrogen, Top. Catal., 59, 1686–1699,
https://doi.org/10.1007/s11244-016-0688-6, 2016.
Kovtunov, K. V., Salnikov, O. G., Skovpin, I. V., Chukanov, N. V., Burueva,
D. B., and Koptyug, I. V.: Catalytic hydrogenation with parahydrogen: a
bridge from homogeneous to heterogeneous catalysis, Pure Appl. Chem., 92,
1029–1046, https://doi.org/10.1515/pac-2020-0203, 2020a.
Kovtunov, K. V., Koptyug, I. V., Fekete, M., Duckett, S. B., Theis, T.,
Joalland, B., and Chekmenev, E. Y.: Parahydrogen-induced hyperpolarization of
gases, Angew. Chem. Int. Edit., 59, 17788–17797,
https://doi.org/10.1002/anie.201915306, 2020b.
Krüger, C., Lisitsin-Baranovsky, E., Ofer, O., Turgeon, P.-A., Vermette,
J., Ayotte, P., and Alexandrowicz, G.: A magnetically focused molecular beam
source for deposition of spin-polarised molecular surface
layers, J. Chem. Phys., 149, 164201, https://doi.org/10.1063/1.5048521, 2018.
Levitt, M. H.: Long live the singlet state!, J. Magn. Reson., 306, 69–74,
https://doi.org/10.1016/j.jmr.2019.07.029, 2019.
Liu, J., Bunes, B. R., Zang, L., and Wang, C.: Supported single-atom
catalysts: synthesis, characterization, properties, and applications,
Environ. Chem. Lett., 16, 477–505, https://doi.org/10.1007/s10311-017-0679-2, 2018.
Lumata, L., Yang, C., Ragavan, M., Carpenter, N., DeBerardinis, R. J., and
Merritt, M. E.: Hyperpolarized
13C magnetic resonance and its use in
metabolic assessment of cultured cells and perfused
organs, Methods Enzymol., 561, 73–106, https://doi.org/10.1016/bs.mie.2015.04.006, 2015.
Markov, P. V., Bragina, G. O., Rassolov, A. V., Mashkovsky, I. S., Baeva, G.
N., Tkachenko, O. P., Yakushev, I. A., Vargaftik, M. N., and Stakheev, A. Y.:
Performance of a bimetallic Pd-In catalyst in the selective liquid-phase hydrogenation of internal and terminal alkynes, Mendeleev Commun., 26, 494–496, https://doi.org/10.1016/j.mencom.2016.11.011, 2016.
Markov, P. V., Bukhtiyarov, A. V., Mashkovsky, I. S., Smirnova, N. S.,
Prosvirin, I. P., Vinokurov, Z. S., Panafidin, M. A., Baeva, G. N.,
Zubavichus, Y. V., Bukhtiyarov, V. I., and Stakheev, A. Y.:
Intermetallic Catalyst: Structure and Catalytic
Characteristics in Selective Hydrogenation of Acetylene, Kinet. Catal., 60, 842–850, https://doi.org/10.1134/S0023158419060065, 2019.
Mashkovsky, I. S., Smirnova, N. S., Markov, P. V., Baeva, G. N., Bragina, G.
O., Bukhtiyarov, A. V., Prosvirin, I. P., and Stakheev, A. Y.: Tuning the
surface structure and catalytic performance of
in
selective liquid-phase hydrogenation by mild oxidative-reductive treatments,
Mendeleev Commun., 28, 603–605, https://doi.org/10.1016/j.mencom.2018.11.013, 2018.
Oka, T.: Nuclear spin selection rules in chemical reactions by angular
momentum algebra, J. Mol. Spectrosc., 228, 635–639,
https://doi.org/10.1016/j.jms.2004.08.015, 2004.
Ozier, I., Yi, P., Khosla, A., and Ramsey, N. F.: Direct observation of
ortho-para transitions in methane, Phys. Rev. Lett., 24, 642–646,
https://doi.org/10.1103/PhysRevLett.24.642, 1970.
Pei, G. X., Liu, X. Y., Wang, A., Lee, A. F., Isaacs, M. A., Li, L., Pan,
X., Yang, X., Wang, X., Tai, Z., Wilson, K., and Zhang, T.: Ag alloyed Pd
single-atom catalysts for efficient selective hydrogenation of acetylene to
ethylene in excess ethylene, ACS Catal., 5, 3717–3725,
https://doi.org/10.1021/acscatal.5b00700, 2015.
Pravica, M. G. and Weitekamp, D. P.: Net NMR alignment by adiabatic
transport of parahydrogen addition products to high magnetic field, Chem.
Phys. Lett., 145, 255–258, https://doi.org/10.1016/0009-2614(88)80002-2,
1988.
Rassolov, A. V., Bragina, G. O., Baeva, G. N., Mashkovsky, I. S., and
Stakheev, A. Y.: Alumina-supported palladium–silver bimetallic catalysts
with single-atom
Pd1 sites in the liquid-phase hydrogenation of
substituted alkynes, Kinet. Catal., 61, 869–878,
https://doi.org/10.1134/S0023158420060129, 2020a.
Rassolov, A. V., Bragina, G. O., Baeva, G. N., Smirnova, N. S., Kazakov, A.
V., Mashkovsky, I. S., Bukhtiyarov, A. V., Zubavichus, Y. V., and Stakheev,
A. Y.: Formation of isolated single-atom
Pd1 sites on the surface of
bimetallic catalysts, Kinet. Catal., 61, 758–767, https://doi.org/10.1134/S0023158420050080, 2020b.
Reineri, F., Boi, T., and Aime, S.: Parahydrogen induced polarization of
13C carboxylate resonance in acetate and pyruvate, Nat. Commun., 6,
5858, https://doi.org/10.1038/ncomms6858, 2015.
Rossini, A. J.: Materials characterization by dynamic nuclear
polarization-enhanced solid-state NMR spectroscopy, J. Phys. Chem. Lett., 9,
5150–5159, https://doi.org/10.1021/acs.jpclett.8b01891, 2018.
Salnikov, O. G., Burueva, D. B., Barskiy, D. A., Bukhtiyarova, G. A.,
Kovtunov, K. V., and Koptyug, I. V.: A mechanistic study of thiophene
hydrodesulfurization by th
e parahydrogen-induced polarization technique,
ChemCatChem, 7, 3508–3512, https://doi.org/10.1002/cctc.201500691, 2015.
Salnikov, O. G., Kovtunova, L. M., Skovpin, I. V., Bukhtiyarov, V. I.,
Kovtunov, K. V., and Koptyug, I. V.: Mechanistic insight into the
heterogeneous hydrogenation of furan derivatives with the use of
parahydrogen, ChemCatChem, 10, 1178–1183,
https://doi.org/10.1002/cctc.201701653, 2018.
Salnikov, O. G., Nikolaou, P., Ariyasingha, N. M., Kovtunov, K. V., Koptyug,
I. V., and Chekmenev, E. Y.: Clinical-scale batch-mode production of
hyperpolarized propane gas for MRI, Anal. Chem., 91, 4741–4746,
https://doi.org/10.1021/acs.analchem.9b00259, 2019.
Samantaray, M. K., D'Elia, V., Pump, E., Falivene, L., Harb, M., Ould Chikh,
S., Cavallo, L., and Basset, J.-M.: The comparison between single atom
catalysis and surface organometallic catalysis, Chem. Rev., 120, 734–813,
https://doi.org/10.1021/acs.chemrev.9b00238, 2020.
Shinnaka, Y., Kawakita, H., Jehin, E., Decock, A., Hutsemékers, D., and
Manfroid, J.: Ortho-to-para abundance ratios of NH
2 in 26 comets:
implications for the real meaning of OPRs, Mon. Not. R. Astron. Soc., 462,
124–131, https://doi.org/10.1093/mnras/stw2298, 2016.
Smirnova, N. S., Markov, P. V., Baeva, G. N., Rassolov, A. V., Mashkovsky,
I. S., Bukhtiyarov, A. V., Prosvirin, I. P., Panafidin, M. A., Zubavichus,
Y. V., Bukhtiyarov, V. I., and Stakheev, A. Y.: CO-induced segregation as an
efficient tool to control the surface composition and catalytic performance
of
catalyst, Mendeleev Commun., 29, 547–549,
https://doi.org/10.1016/j.mencom.2019.09.023, 2019.
Stakheev, A. Y., Smirnova, N. S., Markov, P. V., Baeva, G. N., Bragina, G.
O., Rassolov, A. V., and Mashkovsky, I. S.: Adsorption-induced segregation as
a method for the target-oriented modification of the surface of a bimetallic
Pd-Ag catalyst, Kinet. Catal., 59, 610–617,
https://doi.org/10.1134/S0023158418050154, 2018.
Stolarov, I. P., Yakushev, I. A., Churakov, A. V., Cherkashina, N. V.,
Smirnova, N. S., Khramov, E. V., Zubavichus, Y. V., Khrustalev, V. N., Markov, A. A., Klyagina, A. P., Kornev, A. B., Martynenko, V. M., Gekhman, A. E., Vargaftik, M. N., and Moiseev, I. I.: Heterometallic
Palladium(II)–Indium(III) and -Gallium(III) Acetate-Bridged Complexes:
Synthesis, Structure, and Catalytic Performance in Homogeneous Alkyne and
Alkene Hydrogenation, Inorg. Chem., 57, 11482–11491,
https://doi.org/10.1021/acs.inorgchem.8b01313, 2018.
Tielens, A. G. G. M.: The molecular universe, Rev. Mod. Phys., 85,
1021–1081, https://doi.org/10.1103/RevModPhys.85.1021, 2013.
Zhao, L., Pinon, A. C., Emsley, L., and Rossini, A. J.: DNP-enhanced
solid-state NMR spectroscopy of active pharmaceutical ingredients, Magn.
Reson. Chem., 56, 583–609, https://doi.org/10.1002/mrc.4688, 2018.
Zhivonitko, V. V., Kovtunov, K. V., Chapovsky, P. L., and Koptyug, I. V.:
Nuclear spin isomers of ethylene: enrichment by chemical synthesis and
application for NMR signal enhancement, Angew. Chem. Int. Edit., 52,
13251–13255, https://doi.org/10.1002/anie.201307389, 2013.
Zhivonitko, V. V., Skovpin, I. V., Crespo-Quesada, M., Kiwi-Minsker, L., and
Koptyug, I. V.: Acetylene oligomerization over Pd nanoparticles with
controlled Shape: a parahydrogen-induced polarization study, J. Phys. Chem.
C, 120, 4945–4953, https://doi.org/10.1021/acs.jpcc.5b12391, 2016.