Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
David L. Goodwin
CORRESPONDING AUTHOR
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Related authors
No articles found.
Yannik T. Woordes and Burkhard Luy
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-13, https://doi.org/10.5194/mr-2025-13, 2025
Preprint under review for MR
Short summary
Short summary
Bilinear rotations like BIRD, TANGO, BANGO, and BIG-BIRD allow the rotation of an isolated spin without couplings, i.e. bilinear intereactions, in one way, while rotating spins with a matched coupling in another way. All four types of robust bilinear rotations with COB-compensation up to 750 Hz couplings are derived and applied in a HMBC/HSQC-COSY supersequence for isotropic samples and in a J-resolved type experiment using a partially aligned sample.
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025, https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Cyril Charlier, Neil Cox, Sophie Martine Prud'homme, Alain Geffard, Jean-Marc Nuzillard, Burkhard Luy, and Guy Lippens
Magn. Reson., 2, 619–627, https://doi.org/10.5194/mr-2-619-2021, https://doi.org/10.5194/mr-2-619-2021, 2021
Short summary
Short summary
The HSQC experiment developed by Bodenhausen and Ruben is a cornerstone for modern NMR. When used in the field of metabolomics, the common practice of decoupling in the proton dimension limits the acquisition time and hence the resolution. Here, we present a virtual decoupling method to maintain both spectral simplicity and resolution, and demonstrate how it increases information content with the zebra mussel metabolome as an example.
Cited articles
Abramovich, D. and Vega, S.: Derivation of Broadband and Narrowband Excitation Pulses Using the Floquet Formalism, J. Magn. Reson. A, 105, 30–48, https://doi.org/10.1006/jmra.1993.1245, 1993. a, b
Aguilar, J. A., Nilsson, M., Bodenhausen, G., and Morris, G. A.: Spin echo NMR spectra without J modulation, Chem. Commun., 48, 811–813,
https://doi.org/10.1039/c1cc16699a, 2012. a, b
Altenhof, A. R., Lindquist, A. W., Foster, L. D. D., Holmes, S. T., and Schurko, R. W.: On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra, J.
Magn. Reson., 309, 106612, https://doi.org/10.1016/j.jmr.2019.106612, 2019. a, b
Anand, C. K., Bain, A. D., Curtis, A. T., and Nie, Z.: Designing optimal universal pulses using second-order, large-scale, non-linear optimization, J. Magn. Reson., 219, 61–74, https://doi.org/10.1016/j.jmr.2012.04.004, 2012. a
Armstrong, G. S., Cano, K. E., Mandelshtam, V. A., Shaka, A. J., and Bendiak,
B.: Rapid 3D NMR using the filter diagonalization method: application to
oligosaccharides derivatized with 13C-labeled acetyl groups, J. Magn.
Reson., 170, 156–63, https://doi.org/10.1016/j.jmr.2004.06.002, 2004. a
Asami, S., Kallies, W., Gunther, J. C., Stavropoulou, M., Glaser, S. J., and
Sattler, M.: Ultrashort Broadband Cooperative Pulses for Multidimensional
Biomolecular NMR Experiments, Angew. Chem. Int. Ed., 57, 14498–14502,
https://doi.org/10.1002/anie.201800220, 2018. a
Barker, P. B., Golay, X., Artemov, D., Ouwerkerk, R., Smith, M. A., and Shaka, A. J.: Broadband proton decoupling for in vivo brain spectroscopy in humans, Magn. Reson. Med., 45, 226–232,
https://doi.org/10.1002/1522-2594(200102)45:2<226::AID-MRM1031>3.0.CO;2-Z, 2001. a, b
Baum, J., Tycko, R., and Pines, A.: Broadband and adiabatic inversion of a
two-level system by phase-modulated pulses, Phys. Rev. A, 32, 3435–3447,
https://doi.org/10.1103/physreva.32.3435, 1985. a
Böhlen, J.-M., Rey, M., and Bodenhausen, G.: Refocusing with chirped pulses for broadband excitation without phase dispersion, J. Magn. Reson., 84, 191–197, https://doi.org/10.1016/0022-2364(89)90018-8, 1989. a, b
Böhlen, J.-M., Burghardt, I., Rey, M., and Bodenhausen, G.:
Frequency-modulated “Chirp” pulses for broadband inversion recovery in
magnetic resonance, J. Magn. Reson., 90, 183–191,
https://doi.org/10.1016/0022-2364(90)90377-l, 1990. a, b
Braun, M. and Glaser, S. J.: Cooperative pulses, J. Magn. Reson., 207, 114–123, https://doi.org/10.1016/j.jmr.2010.08.013, 2010. a
Braun, M. and Glaser, S. J.: Concurrently optimized cooperative pulses in
robust quantum control: application to broadband Ramsey-type pulse sequence
elements, New J. Phys., 16, 115002, https://doi.org/10.1088/1367-2630/16/11/115002, 2014. a
Brif, C., Grace, M. D., Sarovar, M., and Young, K. C.: Exploring adiabatic
quantum trajectories via optimal control, New J. Phys., 16, 065013,
https://doi.org/10.1088/1367-2630/16/6/065013, 2014. a
Brown, D.: Constant amplitude broadband refocusing pulses from numerical
optimization, Magn. Reson. Chem., 49, 705–709, https://doi.org/10.1002/mrc.2806, 2011. a
Burghardt, I., Böhlen, J., and Bodenhausen, G.: Broadband
multiple‐quantum nuclear magnetic resonance with frequency‐modulated
“chirp” pulses: Applications to pairs of scalar‐coupled spin
nuclei, J. Chem. Phys., 93, 7687–7697, https://doi.org/10.1063/1.459348, 1990. a, b
Cano, K. E., Smith, M. A., and Shaka, A. J.: Adjustable, broadband, selective
excitation with uniform phase, J. Magn. Reson., 155, 131–139, https://doi.org/10.1006/jmre.2002.2506, 2002. a, b
Cho, H. and Pines, A.: Iterative maps for broadband excitation of transverse
coherence in two level systems, J. Chem. Phys., 86, 6591–6601,
https://doi.org/10.1063/1.452405, 1987. a
Conolly, S., Nishimura, D., and Macovski, A.: Optimal control solutions to the magnetic resonance selective excitation problem, IEEE Trans. Med. Imaging, 5, 106–15, https://doi.org/10.1109/TMI.1986.4307754, 1986. a
Coote, P., Bermel, W., and Arthanari, H.: Optimization of phase dispersion enables broadband excitation without homonuclear coupling artifacts, J. Magn.
Reson., 325, 106928, https://doi.org/10.1016/j.jmr.2021.106928, 2021. a, b
de Fouquieres, P.: Implementing quantum gates by optimal control with doubly
exponential convergence, Phys. Rev. Lett., 108, 110504,
https://doi.org/10.1103/PhysRevLett.108.110504, 2012. a
de Fouquieres, P., Schirmer, S. G., Glaser, S. J., and Kuprov, I.: Second order gradient ascent pulse engineering, J. Magn. Reson., 212, 412–7,
https://doi.org/10.1016/j.jmr.2011.07.023, 2011. a
Doll, A. and Jeschke, G.: Fourier-transform electron spin resonance with
bandwidth-compensated chirp pulses, J. Magn. Reson., 246, 18–26,
https://doi.org/10.1016/j.jmr.2014.06.016, 2014. a
Doll, A. and Jeschke, G.: EPR-correlated dipolar spectroscopy by Q-band chirp SIFTER, Phys. Chem. Chem. Phys., 18, 23111–23120, https://doi.org/10.1039/c6cp03067j, 2016. a
Doll, A. and Jeschke, G.: Double electron-electron resonance with multiple
non-selective chirp refocusing, Phys. Chem. Chem. Phys., 19, 1039–1053,
https://doi.org/10.1039/c6cp07262c, 2017a. a
Doll, A. and Jeschke, G.: Wideband frequency-swept excitation in pulsed EPR spectroscopy, J. Magn. Reson., 280, 46–62, https://doi.org/10.1016/j.jmr.2017.01.004,
2017b. a
Ehni, S. and Luy, B.: A systematic approach for optimizing the robustness of
pulse sequence elements with respect to couplings, offsets, and B1-field
inhomogeneities (COB), Magn. Reson. Chem., 50, S63–S72,
https://doi.org/10.1002/mrc.3846, 2012. a, b
Ehni, S. and Luy, B.: BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments, J. Magn. Reson., 232, 7–17,
https://doi.org/10.1016/j.jmr.2013.04.007, 2013. a
Ehni, S. and Luy, B.: Robust INEPT and refocused INEPT transfer with compensation of a wide range of couplings, offsets, and B1-field inhomogeneities (COB3), J. Magn. Reson., 247, 111–117, https://doi.org/10.1016/j.jmr.2014.07.010, 2014. a
Ehni, S., Koos, M. R. M., Reinsperger, T., Haller, J. D., Goodwin, D. L., and Luy, B.: Concurrent J-Evolving Refocusing Pulses, arXiv [preprint], arXiv:2109.05453, 12 September 2021. a, b
Emsley, L. and Bodenhausen, G.: Gaussian pulse cascades: New analytical functions for rectangular selective inversion and in-phase excitation in NMR,
Chem. Phys. Lett., 165, 469–476, https://doi.org/10.1016/0009-2614(90)87025-m, 1990. a
Emsley, L. and Bodenhausen, G.: Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators, J. Magn. Reson., 97, 135–148, https://doi.org/10.1016/0022-2364(92)90242-y, 1992. a
Enders, M., Görling, B., Braun, A. B., Seltenreich, J. E., Reichenbach,
L. F., Rissanen, K., Nieger, M., Luy, B., Schepers, U., and Bräse, S.:
Cytotoxicity and NMR Studies of Platinum Complexes with Cyclooctadiene
Ligands, Organometallics, 33, 4027–4034, https://doi.org/10.1021/om500540x, 2014. a
Enthart, A., Freudenberger, J. C., Furrer, J., Kessler, H., and Luy, B.: The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings, J. Magn. Reson., 192, 314–22, https://doi.org/10.1016/j.jmr.2008.03.009, 2008. a
Ewing, B., Glaser, S. J., and Drobny, G. P.: Development and optimization of
shaped NMR pulses for the study of coupled spin systems, Chem. Phys., 147,
121–129, https://doi.org/10.1016/0301-0104(90)85028-u, 1990. a
Foroozandeh, M.: Spin dynamics during chirped pulses: applications to homonuclear decoupling and broadband excitation, J. Magn. Reson., 318, 106768, https://doi.org/10.1016/j.jmr.2020.106768, 2020. a, b
Frankel, J., Wilén, J., and Hansson Mild, K.: Assessing Exposures to Magnetic Resonance Imaging's Complex Mixture of Magnetic Fields for In Vivo, In Vitro, and Epidemiologic Studies of Health Effects for Staff and Patients,
Front. Public Health, 6, 66, https://doi.org/10.3389/fpubh.2018.00066, 2018. a
Freeman, R., Friedrich, J., and Wu, X. L.: A Pulse for All Seasons –
Fourier-Transform Spectra without a Phase Gradient, J. Magn. Reson., 79,
561–567, https://doi.org/10.1016/0022-2364(88)90092-3, 1988. a
Garwood, M. and DelaBarre, L.: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR, J. Magn. Reson., 153, 155–177, https://doi.org/10.1006/jmre.2001.2340, 2001. a
Garwood, M. and Ke, Y.: Symmetric pulses to induce arbitrary flip angles with
compensation for rf inhomogeneity and resonance offsets, J. Magn. Reson., 94, 511–525, https://doi.org/10.1016/0022-2364(91)90137-i, 1991. a, b
Gershenzon, N. I., Kobzar, K., Luy, B., Glaser, S. J., and Skinner, T. E.: Optimal control design of excitation pulses that accommodate relaxation, J. Magn. Reson., 188, 330–336, https://doi.org/10.1016/j.jmr.2007.08.007, 2007. a
Gershenzon, N. I., Skinner, T. E., Brutscher, B., Khaneja, N., Nimbalkar, M., Luy, B., and Glaser, S. J.: Linear phase slope in pulse design: application to coherence transfer, J. Magn. Reson., 192, 235–243,
https://doi.org/10.1016/j.jmr.2008.02.021, 2008. a
Goodwin, D. L.: Advanced Optimal Control Methods for Spin Systems, PhD
thesis, University of Southampton, https://doi.org/10.5258/soton/t0003, 2017. a
Goodwin, D. L. and Kuprov, I.: Auxiliary matrix formalism for interaction
representation transformations, optimal control, and spin relaxation
theories, J. Chem. Phys., 143, 084113, https://doi.org/10.1063/1.4928978, 2015. a
Goodwin, D. L. and Kuprov, I.: Modified Newton-Raphson GRAPE methods for
optimal control of spin systems, J. Chem. Phys., 144, 204107,
https://doi.org/10.1063/1.4949534, 2016. a, b
Haller, J. D., Bodor, A., and Luy, B.: Real-time pure shift measurements for uniformly isotope-labeled molecules using X-selective BIRD homonuclear decoupling, J. Magn. Reson., 302, 64–71, https://doi.org/10.1016/j.jmr.2019.03.011, 2019. a
Haller, J. D., Goodwin, D. L., and Luy, B.: Pulse Shapes, Karlsruher Institut für Technologie (KIT) [data set], https://www.ioc.kit.edu/luy/111.php, last access: 25 April 2022. a
Hull, W. E.: Experimental aspects of two-dimensional NMR, in: Two-dimensional NMR Spectroscopy – Applications for Chemists and Biochemists, edited by: Croasmun, W. R. and Carlson, R. M. K., VCH Publishers, New York, 67–456, https://doi.org/10.1016/S0003-2670(00)84174-4, 1994. a
Hwang, T. L., van Zijl, P. C., and Garwood, M.: Broadband adiabatic refocusing without phase distortion, J. Magn. Reson., 124, 250–4,
https://doi.org/10.1006/jmre.1996.1049, 1997. a
Jeschke, G.: Quo vadis EPR?, J. Magn. Reson., 306, 36–41, https://doi.org/10.1016/j.jmr.2019.07.008, 2019. a
Jeschke, G., Pribitzer, S., and Doll, A.: Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy, J. Phys. Chem. B, 119, 13570–13582, https://doi.org/10.1021/acs.jpcb.5b02964, 2015. a
Keniry, M. A. and Sanctuary, B. C.: Experimental-Verification of Composite
Inversion Pulses Obtained by Series Expansion of the Offset Angle, J. Magn.
Reson., 97, 382–384, https://doi.org/10.1016/0022-2364(92)90322-X, 1992. a
Khaneja, N.: Chirp excitation, J. Magn. Reson., 282, 32–36, https://doi.org/10.1016/j.jmr.2017.07.003, 2017. a
Khaneja, N.: Chirp mixing, Chem. Phys. Lett., 704, 62–67, https://doi.org/10.1016/j.cplett.2018.05.047, 2018. a
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., and Glaser, S. J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson., 172, 296–305, https://doi.org/10.1016/j.jmr.2004.11.004, 2005. a
Kobzar, K., Luy, B., Khaneja, N., and Glaser, S. J.: Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset, J. Magn. Reson., 173, 229–235, https://doi.org/10.1016/j.jmr.2004.12.005, 2005. a
Kobzar, K., Skinner, T. E., Khaneja, N., Glaser, S. J., and Luy, B.: Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses, J. Magn. Reson., 194, 58–66, https://doi.org/10.1016/j.jmr.2008.05.023, 2008. a, b, c
Koos, M. R. M., Feyrer, H., and Luy, B.: Broadband excitation pulses with
variable RF amplitude-dependent flip angle (RADFA), Magn. Reson. Chem., 53,
886–893, https://doi.org/10.1002/mrc.4297, 2015. a
Koos, M. R. M., Feyrer, H., and Luy, B.: Broadband RF-amplitude-dependent flip angle pulses with linear phase slope, Magn. Reson. Chem., 55, 797–803,
https://doi.org/10.1002/mrc.4593, 2017. a
Kupc̆e, Ē. and Freeman, R.: Wideband Excitation with Polychromatic Pulses, J. Magn. Reson. A, 108, 268–273, https://doi.org/10.1006/jmra.1994.1123, 1994. a
Kupc̆e, Ē. and Freeman, R.: Adiabatic Pulses for Wideband Inversion and Broadband Decoupling, J. Magn. Reson. A, 115, 273–276,
https://doi.org/10.1006/jmra.1995.1179, 1995. a
Kupc̆e, Ē. and Freeman, R.: Compensation for Spin–Spin Coupling
Effects during Adiabatic Pulses, J. Magn. Reson., 127, 36–48,
https://doi.org/10.1006/jmre.1997.1193, 1997. a, b
Kupc̆e, Ē. and Freeman, R.: Fast multidimensional NMR by polarization sharing, Magn. Reson. Chem., 45, 2–4, https://doi.org/10.1002/mrc.1931, 2007. a
Levitt, M. H.: Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity, J. Magn.
Reson., 48, 234–264, https://doi.org/10.1016/0022-2364(82)90275-x, 1982. a
Levitt, M. H.: Composite pulses, Progr. Nucl. Magn. Reson. Spectrosc., 18,
61–122, https://doi.org/10.1016/0079-6565(86)80005-x, 1986. a, b
Levitt, M. H.: NMR Solvent Peak Suppression by Nonlinear Excitation, J. Chem.
Phys., 88, 3481–3496, https://doi.org/10.1063/1.453897, 1988. a
Lingel, A., Vulpetti, A., Reinsperger, T., Proudfoot, A., Denay, R., Frommlet, A., Henry, C., Hommel, U., Gossert, A. D., Luy, B., and Frank, A. O.: Comprehensive and High-Throughput Exploration of Chemical Space Using
Broadband 19F NMR-Based Screening, Angew. Chem. Int. Ed., 59,
14809–14817, https://doi.org/10.1002/anie.202002463, 2020. a
Lurie, D. J.: Numerical design of composite radiofrequency pulses, J. Magn.
Reson., 70, 11–20, https://doi.org/10.1016/0022-2364(86)90359-8, 1986. a
Luy, B., Kobzar, K., Skinner, T. E., Khaneja, N., and Glaser, S. J.:
Construction of universal rotations from point-to-point transformations, J.
Magn. Reson., 176, 179–86, https://doi.org/10.1016/j.jmr.2005.06.002, 2005. a
Mao, J., Mareci, T. H., Scott, K. N., and Andrew, E. R.: Selective inversion
radiofrequency pulses by optimal control, J. Magn. Reson., 70,
310–318, https://doi.org/10.1016/0022-2364(86)90016-8, 1986. a
Moore, J., Jankiewicz, M., Anderson, A. W., and Gore, J. C.: Evaluation of non-selective refocusing pulses for 7 T MRI, J. Magn. Reson., 214, 212–220, https://doi.org/10.1016/j.jmr.2011.11.010, 2012. a
Odedra, S. and Wimperis, S.: Use of composite refocusing pulses to form spin echoes, J. Magn. Reson., 214, 68–75, https://doi.org/10.1016/j.jmr.2011.10.006, 2012. a
Ogura, K., Terasawa, H., and Inagaki, F.: Fully 13C-Refocused
Multidimensional 13C-Edited Pulse Schemes Using Broadband Shaped
Inversion and Refocusing Pulses, J. Magn. Reson. B, 112, 63–68,
https://doi.org/10.1006/jmrb.1996.0110, 1996. a
Poon, C. S. and Henkelman, R. M.: 180∘ refocusing pulses which are insensitive to static and radiofrequency field inhomogeneity, J. Magn. Reson., 99, 45–55, https://doi.org/10.1016/0022-2364(92)90154-y, 1992. a
Poon, C. S. and Henkelman, R. M.: Robust Refocusing Pulses of Limited Power, J. Magn. Reson. A, 116, 161–180, https://doi.org/10.1006/jmra.1995.0005, 1995. a
Power, J. E., Foroozandeh, M., Adams, R. W., Nilsson, M., Coombes, S. R., Phillips, A. R., and Morris, G. A.: Increasing the quantitative bandwidth of NMR measurements, Chem. Commun., 52, 2916–2919, https://doi.org/10.1039/c5cc10206e, 2016. a
Rosenfeld, D. and Zur, Y.: Design of adiabatic selective pulses using optimal control theory, Magn. Reson. Med., 36, 401–409, https://doi.org/10.1002/mrm.1910360311, 1996. a, b
Schulze-Sünninghausen, D., Becker, J., and Luy, B.: Rapid heteronuclear
single quantum correlation NMR spectra at natural abundance, J. Am. Chem.
Soc., 136, 1242–1245, https://doi.org/10.1021/ja411588d, 2014. a
Schulze-Sünninghausen, D., Becker, J., Koos, M. R. M., and Luy, B.:
Improvements, extensions, and practical aspects of rapid ASAP-HSQC and
ALSOFAST-HSQC pulse sequences for studying small molecules at natural
abundance, J. Magn. Reson., 281, 151–161, https://doi.org/10.1016/j.jmr.2017.05.012,
2017. a
Shaka, A. J.: Composite pulses for ultra-broadband spin inversion, Chem. Phys. Lett., 120, 201–205, https://doi.org/10.1016/0009-2614(85)87040-8, 1985. a
Shaka, A. J. and Freeman, R.: Composite pulses with dual compensation, J. Magn. Reson., 55, 487–493, https://doi.org/10.1016/0022-2364(83)90133-6, 1983. a
Shaka, A. J. and Pines, A.: Symmetric phase-alternating composite pulses, J. Magn. Reson., 71, 495–503, https://doi.org/10.1016/0022-2364(87)90249-6, 1987. a, b
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.:
Application of optimal control theory to the design of broadband excitation
pulses for high-resolution NMR, J. Magn. Reson., 163, 8–15,
https://doi.org/10.1016/s1090-7807(03)00153-8, 2003. a, b
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.: Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude, J. Magn. Reson., 167, 68–74,
https://doi.org/10.1016/j.jmr.2003.12.001, 2004. a
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.: Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses, J. Magn. Reson., 172, 17–23, https://doi.org/10.1016/j.jmr.2004.09.011, 2005. a
Skinner, T. E., Kobzar, K., Luy, B., Bendall, M. R., Bermel, W., Khaneja, N., and Glaser, S. J.: Optimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation,
J. Magn. Reson., 179, 241–249, https://doi.org/10.1016/j.jmr.2005.12.010, 2006. a, b
Skinner, T. E., Gershenzon, N. I., Nimbalkar, M., Bermel, W., Luy, B., and Glaser, S. J.: New strategies for designing robust universal rotation pulses: application to broadband refocusing at low power, J. Magn. Reson., 216,
78–87, https://doi.org/10.1016/j.jmr.2012.01.005, 2012. a
Smith, M. A., Hu, H., and Shaka, A. J.: Improved broadband inversion performance for NMR in liquids, J. Magn. Reson., 151, 269–283, https://doi.org/10.1006/jmre.2001.2364, 2001. a, b, c
Spindler, P. E., Zhang, Y., Endeward, B., Gershernzon, N., Skinner, T. E., Glaser, S. J., and Prisner, T. F.: Shaped optimal control pulses for increased excitation bandwidth in EPR, J. Magn. Reson., 218, 49–58, https://doi.org/10.1016/j.jmr.2012.02.013, 2012. a
Spindler, P. E., Waclawska, I., Endeward, B., Plackmeyer, J., Ziegler, C., and Prisner, T. F.: Carr-Purcell Pulsed Electron Double Resonance with Shaped Inversion Pulses, J. Phys. Chem. Lett., 6, 4331–4335, https://doi.org/10.1021/acs.jpclett.5b01933, 2015. a
Spindler, P. E., Schöps, P., Kallies, W., Glaser, S. J., and Prisner, T. F.: Perspectives of shaped pulses for EPR spectroscopy, J. Magn. Reson., 280, 30–45, https://doi.org/10.1016/j.jmr.2017.02.023, 2017. a
Takegoshi, K., Ogura, K., and Hikichi, K.: A perfect spin echo in a weakly homonuclear J-coupled two spin-12 system, J. Magn. Reson., 84, 611–615, https://doi.org/10.1016/0022-2364(89)90127-3, 1989. a, b
Tal, A. and Frydman, L.: Single-scan multidimensional magnetic resonance, Prog. Nucl. Magn. Reson. Spectrosc., 57, 241–292,
https://doi.org/10.1016/j.pnmrs.2010.04.001, 2010. a
Tycko, R., Cho, H. M., Schneider, E., and Pines, A.: Composite pulses without phase distortion, J. Magn. Reson., 61, 90–101, https://doi.org/10.1016/0022-2364(85)90270-7, 1985a. a, b
Tycko, R., Pines, A., and Guckenheimer, J.: Fixed point theory of iterative
excitation schemes in NMR, J. Chem. Phys., 83, 2775–2802,
https://doi.org/10.1063/1.449228, 1985b. a
Tzvetkova, P., Simova, S., and Luy, B.: P.E.HSQC: a simple experiment for simultaneous and sign-sensitive measurement of (1JCH+DCH) and (2JHH+DHH) couplings, J. Magn. Reson., 186, 193–200, https://doi.org/10.1016/j.jmr.2007.02.009, 2007. a
Van Loan, C.: Computing integrals involving the matrix exponential, IEEE Trans. Automat. Contr., 23, 395–404, https://doi.org/10.1109/tac.1978.1101743, 1978. a
Warren, W. S.: Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence, J. Chem. Phys., 81, 5437–5448, https://doi.org/10.1063/1.447644, 1984. a
Wimperis, S.: Iterative schemes for phase-distortionless composite 180∘ pulses, J. Magn. Reson., 93, 199–206,
https://doi.org/10.1016/0022-2364(91)90043-s, 1991. a
Wimperis, S.: Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments, J. Magn. Reson. A, 109, 221–231, https://doi.org/10.1006/jmra.1994.1159, 1994. a
Zax, D. B., Goelman, G., and Vega, S.: Amplitude-Modulated Composite Pulses, J. Magn. Reson., 80, 375–382, https://doi.org/10.1016/0022-2364(88)90312-5, 1988. a
Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R., and Kay, L. E.: Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex, J. Am. Chem. Soc., 119, 6711–6721, https://doi.org/10.1021/ja970224q, 1997. a
Short summary
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective transverse 90° rotations throughout their bandwidth, with a quadratic offset dependence of the phase in the x,y plane. Together with phase-matched SORDOR-180 pulses, this enables a direct implementation of the Böhlen–Bodenhausen approach for frequency-swept pulses for a type of 90°/180° pulse–delay sequence. Example pulse shapes are characterised, and an application is given with a 19F-PROJECT experiment.
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective...