Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
David L. Goodwin
CORRESPONDING AUTHOR
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Related authors
No articles found.
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Cyril Charlier, Neil Cox, Sophie Martine Prud'homme, Alain Geffard, Jean-Marc Nuzillard, Burkhard Luy, and Guy Lippens
Magn. Reson., 2, 619–627, https://doi.org/10.5194/mr-2-619-2021, https://doi.org/10.5194/mr-2-619-2021, 2021
Short summary
Short summary
The HSQC experiment developed by Bodenhausen and Ruben is a cornerstone for modern NMR. When used in the field of metabolomics, the common practice of decoupling in the proton dimension limits the acquisition time and hence the resolution. Here, we present a virtual decoupling method to maintain both spectral simplicity and resolution, and demonstrate how it increases information content with the zebra mussel metabolome as an example.
Related subject area
Field: Liquid-state NMR | Topic: Pulse-sequence development
PRESERVE: adding variable flip-angle excitation to TROSY NMR spectroscopy
A modular library for fast prototyping of solution-state nuclear magnetic resonance experiments
Various facets of intermolecular transfer of phase coherence by nuclear dipolar fields
Mechanisms of coherent re-arrangement for long-lived spin order
Rapid measurement of heteronuclear transverse relaxation rates using non-uniformly sampled R1ρ accordion experiments
Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues
Using delayed decoupling to attenuate residual signals in editing filters
Four-dimensional NOE-NOE spectroscopy of SARS-CoV-2 Main Protease to facilitate resonance assignment and structural analysis
Multiple solvent signal presaturation and decoupling artifact removal in 13C{1H} nuclear magnetic resonance
Bernhard Brutscher
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-9, https://doi.org/10.5194/mr-2024-9, 2024
Revised manuscript accepted for MR
Short summary
Short summary
We introduce the PRESERVE pulse sequence element, allowing variable flip-angle adjustment in 2D 1H-15N and 1H-13C TROSY-type correlation experiments. PRESERVE-TROSY exploits a remarkable array of up to nine orthogonal polarization-coherence transfer pathways, showcasing the remarkable potential of spin manipulations achievable through the design and optimization of NMR pulse sequences.
Michał Górka and Wiktor Koźmiński
Magn. Reson., 5, 51–59, https://doi.org/10.5194/mr-5-51-2024, https://doi.org/10.5194/mr-5-51-2024, 2024
Short summary
Short summary
We have written a programming library for biological NMR, a commonly used research method. Its use simplifies (makes faster and less error-prone) development of new research methods. We demonstrate that it allows for consolidation of several experimental methods into one file without adding complexity. We hope that it will be of use for other groups developing NMR experiments.
Philippe Pelupessy
Magn. Reson., 4, 271–283, https://doi.org/10.5194/mr-4-271-2023, https://doi.org/10.5194/mr-4-271-2023, 2023
Short summary
Short summary
In nuclear magnetic resonance, the magnetization of abundantly present nuclei contributes to the overall field felt by the same nuclei through intermolecular dipolar interactions. This has led to many surprising discoveries, such as multiple-spin echoes and intermolecular cross-peaks in 2D spectroscopy. In this work, the effect of the dipolar field under continuous irradiation is investigated. Various methods to obtain intermolecular transfer of phase coherences are presented.
Florin Teleanu and Paul R. Vasos
Magn. Reson., 2, 741–749, https://doi.org/10.5194/mr-2-741-2021, https://doi.org/10.5194/mr-2-741-2021, 2021
Short summary
Short summary
Long-lived nuclear spin order helps extend the timescale of polarisation storage. This occurs as populations of nuclear spin singlet states feature slow decays compared to longitudinal magnetisation. The excitation of these symmetry-adapted states required spin choreographies that were often overshadowed in scholarly presentations by their applications. We recapitulate some of the milestones achieved in designing methods for long-lived spin order excitation and comment on future perspectives.
Sven Wernersson, Göran Carlström, Andreas Jakobsson, and Mikael Akke
Magn. Reson., 2, 571–587, https://doi.org/10.5194/mr-2-571-2021, https://doi.org/10.5194/mr-2-571-2021, 2021
Short summary
Short summary
Multidimensional NMR relaxation experiments provide a powerful means of studying protein dynamics but typically require long acquisition times. Here, we combine two approaches that individually shorten the length of the experiment: accordion spectroscopy and non-uniform sampling (NUS). We extract relaxation rate constants by applying maximum likelihood estimation of sparse exponential modes modeled on the accordion–NUS interferograms, resulting in time savings by a factor of roughly 10.
Isabella C. Felli, Wolfgang Bermel, and Roberta Pierattelli
Magn. Reson., 2, 511–522, https://doi.org/10.5194/mr-2-511-2021, https://doi.org/10.5194/mr-2-511-2021, 2021
Short summary
Short summary
NMR represents a key spectroscopic technique for studying intrinsically disordered proteins (IDPs) that lack a stable three-dimensional structure. We present a set of NMR experiments tailored for proline residues, which are highly abundant in IDPs. The novel experiments have very interesting properties for the investigation of IDPs of increasing complexity.
Kenneth A. Marincin, Indrani Pal, and Dominique P. Frueh
Magn. Reson., 2, 475–487, https://doi.org/10.5194/mr-2-475-2021, https://doi.org/10.5194/mr-2-475-2021, 2021
Short summary
Short summary
Isotope filters are pivotal for studying interactions between labelled and unlabeled moieties by NMR. We present an isotope filter method to complement existing filters and attenuate undesired signals that escaped them. This advance will readily facilitate molecular studies of binding events or post-translational modifications by NMR.
Angus J. Robertson, Jinfa Ying, and Ad Bax
Magn. Reson., 2, 129–138, https://doi.org/10.5194/mr-2-129-2021, https://doi.org/10.5194/mr-2-129-2021, 2021
Short summary
Short summary
NMR study of large proteins such as SARS-CoV-2 Main Protease can be challenging when exchange broadening, multiple stable conformations, and back-exchanging the fully deuterated chain pose problems. We demonstrate that 4D NMR, including an extension of 3D NOE-NOE spectroscopy, provides an effective tool for spectral analysis. In combination with X-ray coordinates, the 4D NMR data are particularly useful for extending and validating assignments and for probing structural features.
Marine Canton, Richard Roe, Stéphane Poigny, Jean-Hugues Renault, and Jean-Marc Nuzillard
Magn. Reson., 1, 155–164, https://doi.org/10.5194/mr-1-155-2020, https://doi.org/10.5194/mr-1-155-2020, 2020
Short summary
Short summary
The cosmetic industry integrates in its products active ingredients of vegetal origin. For this purpose, plant extracts are prepared and their content must be characterized to check their conformity with safety regulations. Many plant extracts contain a high proportion of high-boiling-point solvents that may conflict with analytical protocols. Extract analysis by fractionation and subsequent 13C NMR analysis required a new solvent signal suppression technique to provide better analytical data.
Cited articles
Abramovich, D. and Vega, S.: Derivation of Broadband and Narrowband Excitation Pulses Using the Floquet Formalism, J. Magn. Reson. A, 105, 30–48, https://doi.org/10.1006/jmra.1993.1245, 1993. a, b
Aguilar, J. A., Nilsson, M., Bodenhausen, G., and Morris, G. A.: Spin echo NMR spectra without J modulation, Chem. Commun., 48, 811–813,
https://doi.org/10.1039/c1cc16699a, 2012. a, b
Altenhof, A. R., Lindquist, A. W., Foster, L. D. D., Holmes, S. T., and Schurko, R. W.: On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra, J.
Magn. Reson., 309, 106612, https://doi.org/10.1016/j.jmr.2019.106612, 2019. a, b
Anand, C. K., Bain, A. D., Curtis, A. T., and Nie, Z.: Designing optimal universal pulses using second-order, large-scale, non-linear optimization, J. Magn. Reson., 219, 61–74, https://doi.org/10.1016/j.jmr.2012.04.004, 2012. a
Armstrong, G. S., Cano, K. E., Mandelshtam, V. A., Shaka, A. J., and Bendiak,
B.: Rapid 3D NMR using the filter diagonalization method: application to
oligosaccharides derivatized with 13C-labeled acetyl groups, J. Magn.
Reson., 170, 156–63, https://doi.org/10.1016/j.jmr.2004.06.002, 2004. a
Asami, S., Kallies, W., Gunther, J. C., Stavropoulou, M., Glaser, S. J., and
Sattler, M.: Ultrashort Broadband Cooperative Pulses for Multidimensional
Biomolecular NMR Experiments, Angew. Chem. Int. Ed., 57, 14498–14502,
https://doi.org/10.1002/anie.201800220, 2018. a
Barker, P. B., Golay, X., Artemov, D., Ouwerkerk, R., Smith, M. A., and Shaka, A. J.: Broadband proton decoupling for in vivo brain spectroscopy in humans, Magn. Reson. Med., 45, 226–232,
https://doi.org/10.1002/1522-2594(200102)45:2<226::AID-MRM1031>3.0.CO;2-Z, 2001. a, b
Baum, J., Tycko, R., and Pines, A.: Broadband and adiabatic inversion of a
two-level system by phase-modulated pulses, Phys. Rev. A, 32, 3435–3447,
https://doi.org/10.1103/physreva.32.3435, 1985. a
Böhlen, J.-M., Rey, M., and Bodenhausen, G.: Refocusing with chirped pulses for broadband excitation without phase dispersion, J. Magn. Reson., 84, 191–197, https://doi.org/10.1016/0022-2364(89)90018-8, 1989. a, b
Böhlen, J.-M., Burghardt, I., Rey, M., and Bodenhausen, G.:
Frequency-modulated “Chirp” pulses for broadband inversion recovery in
magnetic resonance, J. Magn. Reson., 90, 183–191,
https://doi.org/10.1016/0022-2364(90)90377-l, 1990. a, b
Braun, M. and Glaser, S. J.: Cooperative pulses, J. Magn. Reson., 207, 114–123, https://doi.org/10.1016/j.jmr.2010.08.013, 2010. a
Braun, M. and Glaser, S. J.: Concurrently optimized cooperative pulses in
robust quantum control: application to broadband Ramsey-type pulse sequence
elements, New J. Phys., 16, 115002, https://doi.org/10.1088/1367-2630/16/11/115002, 2014. a
Brif, C., Grace, M. D., Sarovar, M., and Young, K. C.: Exploring adiabatic
quantum trajectories via optimal control, New J. Phys., 16, 065013,
https://doi.org/10.1088/1367-2630/16/6/065013, 2014. a
Brown, D.: Constant amplitude broadband refocusing pulses from numerical
optimization, Magn. Reson. Chem., 49, 705–709, https://doi.org/10.1002/mrc.2806, 2011. a
Burghardt, I., Böhlen, J., and Bodenhausen, G.: Broadband
multiple‐quantum nuclear magnetic resonance with frequency‐modulated
“chirp” pulses: Applications to pairs of scalar‐coupled spin
nuclei, J. Chem. Phys., 93, 7687–7697, https://doi.org/10.1063/1.459348, 1990. a, b
Cano, K. E., Smith, M. A., and Shaka, A. J.: Adjustable, broadband, selective
excitation with uniform phase, J. Magn. Reson., 155, 131–139, https://doi.org/10.1006/jmre.2002.2506, 2002. a, b
Cho, H. and Pines, A.: Iterative maps for broadband excitation of transverse
coherence in two level systems, J. Chem. Phys., 86, 6591–6601,
https://doi.org/10.1063/1.452405, 1987. a
Conolly, S., Nishimura, D., and Macovski, A.: Optimal control solutions to the magnetic resonance selective excitation problem, IEEE Trans. Med. Imaging, 5, 106–15, https://doi.org/10.1109/TMI.1986.4307754, 1986. a
Coote, P., Bermel, W., and Arthanari, H.: Optimization of phase dispersion enables broadband excitation without homonuclear coupling artifacts, J. Magn.
Reson., 325, 106928, https://doi.org/10.1016/j.jmr.2021.106928, 2021. a, b
de Fouquieres, P.: Implementing quantum gates by optimal control with doubly
exponential convergence, Phys. Rev. Lett., 108, 110504,
https://doi.org/10.1103/PhysRevLett.108.110504, 2012. a
de Fouquieres, P., Schirmer, S. G., Glaser, S. J., and Kuprov, I.: Second order gradient ascent pulse engineering, J. Magn. Reson., 212, 412–7,
https://doi.org/10.1016/j.jmr.2011.07.023, 2011. a
Doll, A. and Jeschke, G.: Fourier-transform electron spin resonance with
bandwidth-compensated chirp pulses, J. Magn. Reson., 246, 18–26,
https://doi.org/10.1016/j.jmr.2014.06.016, 2014. a
Doll, A. and Jeschke, G.: EPR-correlated dipolar spectroscopy by Q-band chirp SIFTER, Phys. Chem. Chem. Phys., 18, 23111–23120, https://doi.org/10.1039/c6cp03067j, 2016. a
Doll, A. and Jeschke, G.: Double electron-electron resonance with multiple
non-selective chirp refocusing, Phys. Chem. Chem. Phys., 19, 1039–1053,
https://doi.org/10.1039/c6cp07262c, 2017a. a
Doll, A. and Jeschke, G.: Wideband frequency-swept excitation in pulsed EPR spectroscopy, J. Magn. Reson., 280, 46–62, https://doi.org/10.1016/j.jmr.2017.01.004,
2017b. a
Ehni, S. and Luy, B.: A systematic approach for optimizing the robustness of
pulse sequence elements with respect to couplings, offsets, and B1-field
inhomogeneities (COB), Magn. Reson. Chem., 50, S63–S72,
https://doi.org/10.1002/mrc.3846, 2012. a, b
Ehni, S. and Luy, B.: BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments, J. Magn. Reson., 232, 7–17,
https://doi.org/10.1016/j.jmr.2013.04.007, 2013. a
Ehni, S. and Luy, B.: Robust INEPT and refocused INEPT transfer with compensation of a wide range of couplings, offsets, and B1-field inhomogeneities (COB3), J. Magn. Reson., 247, 111–117, https://doi.org/10.1016/j.jmr.2014.07.010, 2014. a
Ehni, S., Koos, M. R. M., Reinsperger, T., Haller, J. D., Goodwin, D. L., and Luy, B.: Concurrent J-Evolving Refocusing Pulses, arXiv [preprint], arXiv:2109.05453, 12 September 2021. a, b
Emsley, L. and Bodenhausen, G.: Gaussian pulse cascades: New analytical functions for rectangular selective inversion and in-phase excitation in NMR,
Chem. Phys. Lett., 165, 469–476, https://doi.org/10.1016/0009-2614(90)87025-m, 1990. a
Emsley, L. and Bodenhausen, G.: Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators, J. Magn. Reson., 97, 135–148, https://doi.org/10.1016/0022-2364(92)90242-y, 1992. a
Enders, M., Görling, B., Braun, A. B., Seltenreich, J. E., Reichenbach,
L. F., Rissanen, K., Nieger, M., Luy, B., Schepers, U., and Bräse, S.:
Cytotoxicity and NMR Studies of Platinum Complexes with Cyclooctadiene
Ligands, Organometallics, 33, 4027–4034, https://doi.org/10.1021/om500540x, 2014. a
Enthart, A., Freudenberger, J. C., Furrer, J., Kessler, H., and Luy, B.: The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings, J. Magn. Reson., 192, 314–22, https://doi.org/10.1016/j.jmr.2008.03.009, 2008. a
Ewing, B., Glaser, S. J., and Drobny, G. P.: Development and optimization of
shaped NMR pulses for the study of coupled spin systems, Chem. Phys., 147,
121–129, https://doi.org/10.1016/0301-0104(90)85028-u, 1990. a
Foroozandeh, M.: Spin dynamics during chirped pulses: applications to homonuclear decoupling and broadband excitation, J. Magn. Reson., 318, 106768, https://doi.org/10.1016/j.jmr.2020.106768, 2020. a, b
Frankel, J., Wilén, J., and Hansson Mild, K.: Assessing Exposures to Magnetic Resonance Imaging's Complex Mixture of Magnetic Fields for In Vivo, In Vitro, and Epidemiologic Studies of Health Effects for Staff and Patients,
Front. Public Health, 6, 66, https://doi.org/10.3389/fpubh.2018.00066, 2018. a
Freeman, R., Friedrich, J., and Wu, X. L.: A Pulse for All Seasons –
Fourier-Transform Spectra without a Phase Gradient, J. Magn. Reson., 79,
561–567, https://doi.org/10.1016/0022-2364(88)90092-3, 1988. a
Garwood, M. and DelaBarre, L.: The return of the frequency sweep: designing adiabatic pulses for contemporary NMR, J. Magn. Reson., 153, 155–177, https://doi.org/10.1006/jmre.2001.2340, 2001. a
Garwood, M. and Ke, Y.: Symmetric pulses to induce arbitrary flip angles with
compensation for rf inhomogeneity and resonance offsets, J. Magn. Reson., 94, 511–525, https://doi.org/10.1016/0022-2364(91)90137-i, 1991. a, b
Gershenzon, N. I., Kobzar, K., Luy, B., Glaser, S. J., and Skinner, T. E.: Optimal control design of excitation pulses that accommodate relaxation, J. Magn. Reson., 188, 330–336, https://doi.org/10.1016/j.jmr.2007.08.007, 2007. a
Gershenzon, N. I., Skinner, T. E., Brutscher, B., Khaneja, N., Nimbalkar, M., Luy, B., and Glaser, S. J.: Linear phase slope in pulse design: application to coherence transfer, J. Magn. Reson., 192, 235–243,
https://doi.org/10.1016/j.jmr.2008.02.021, 2008. a
Goodwin, D. L.: Advanced Optimal Control Methods for Spin Systems, PhD
thesis, University of Southampton, https://doi.org/10.5258/soton/t0003, 2017. a
Goodwin, D. L. and Kuprov, I.: Auxiliary matrix formalism for interaction
representation transformations, optimal control, and spin relaxation
theories, J. Chem. Phys., 143, 084113, https://doi.org/10.1063/1.4928978, 2015. a
Goodwin, D. L. and Kuprov, I.: Modified Newton-Raphson GRAPE methods for
optimal control of spin systems, J. Chem. Phys., 144, 204107,
https://doi.org/10.1063/1.4949534, 2016. a, b
Haller, J. D., Bodor, A., and Luy, B.: Real-time pure shift measurements for uniformly isotope-labeled molecules using X-selective BIRD homonuclear decoupling, J. Magn. Reson., 302, 64–71, https://doi.org/10.1016/j.jmr.2019.03.011, 2019. a
Haller, J. D., Goodwin, D. L., and Luy, B.: Pulse Shapes, Karlsruher Institut für Technologie (KIT) [data set], https://www.ioc.kit.edu/luy/111.php, last access: 25 April 2022. a
Hull, W. E.: Experimental aspects of two-dimensional NMR, in: Two-dimensional NMR Spectroscopy – Applications for Chemists and Biochemists, edited by: Croasmun, W. R. and Carlson, R. M. K., VCH Publishers, New York, 67–456, https://doi.org/10.1016/S0003-2670(00)84174-4, 1994. a
Hwang, T. L., van Zijl, P. C., and Garwood, M.: Broadband adiabatic refocusing without phase distortion, J. Magn. Reson., 124, 250–4,
https://doi.org/10.1006/jmre.1996.1049, 1997. a
Jeschke, G.: Quo vadis EPR?, J. Magn. Reson., 306, 36–41, https://doi.org/10.1016/j.jmr.2019.07.008, 2019. a
Jeschke, G., Pribitzer, S., and Doll, A.: Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy, J. Phys. Chem. B, 119, 13570–13582, https://doi.org/10.1021/acs.jpcb.5b02964, 2015. a
Keniry, M. A. and Sanctuary, B. C.: Experimental-Verification of Composite
Inversion Pulses Obtained by Series Expansion of the Offset Angle, J. Magn.
Reson., 97, 382–384, https://doi.org/10.1016/0022-2364(92)90322-X, 1992. a
Khaneja, N.: Chirp excitation, J. Magn. Reson., 282, 32–36, https://doi.org/10.1016/j.jmr.2017.07.003, 2017. a
Khaneja, N.: Chirp mixing, Chem. Phys. Lett., 704, 62–67, https://doi.org/10.1016/j.cplett.2018.05.047, 2018. a
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., and Glaser, S. J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson., 172, 296–305, https://doi.org/10.1016/j.jmr.2004.11.004, 2005. a
Kobzar, K., Luy, B., Khaneja, N., and Glaser, S. J.: Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset, J. Magn. Reson., 173, 229–235, https://doi.org/10.1016/j.jmr.2004.12.005, 2005. a
Kobzar, K., Skinner, T. E., Khaneja, N., Glaser, S. J., and Luy, B.: Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses, J. Magn. Reson., 194, 58–66, https://doi.org/10.1016/j.jmr.2008.05.023, 2008. a, b, c
Koos, M. R. M., Feyrer, H., and Luy, B.: Broadband excitation pulses with
variable RF amplitude-dependent flip angle (RADFA), Magn. Reson. Chem., 53,
886–893, https://doi.org/10.1002/mrc.4297, 2015. a
Koos, M. R. M., Feyrer, H., and Luy, B.: Broadband RF-amplitude-dependent flip angle pulses with linear phase slope, Magn. Reson. Chem., 55, 797–803,
https://doi.org/10.1002/mrc.4593, 2017. a
Kupc̆e, Ē. and Freeman, R.: Wideband Excitation with Polychromatic Pulses, J. Magn. Reson. A, 108, 268–273, https://doi.org/10.1006/jmra.1994.1123, 1994. a
Kupc̆e, Ē. and Freeman, R.: Adiabatic Pulses for Wideband Inversion and Broadband Decoupling, J. Magn. Reson. A, 115, 273–276,
https://doi.org/10.1006/jmra.1995.1179, 1995. a
Kupc̆e, Ē. and Freeman, R.: Compensation for Spin–Spin Coupling
Effects during Adiabatic Pulses, J. Magn. Reson., 127, 36–48,
https://doi.org/10.1006/jmre.1997.1193, 1997. a, b
Kupc̆e, Ē. and Freeman, R.: Fast multidimensional NMR by polarization sharing, Magn. Reson. Chem., 45, 2–4, https://doi.org/10.1002/mrc.1931, 2007. a
Levitt, M. H.: Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity, J. Magn.
Reson., 48, 234–264, https://doi.org/10.1016/0022-2364(82)90275-x, 1982. a
Levitt, M. H.: Composite pulses, Progr. Nucl. Magn. Reson. Spectrosc., 18,
61–122, https://doi.org/10.1016/0079-6565(86)80005-x, 1986. a, b
Levitt, M. H.: NMR Solvent Peak Suppression by Nonlinear Excitation, J. Chem.
Phys., 88, 3481–3496, https://doi.org/10.1063/1.453897, 1988. a
Lingel, A., Vulpetti, A., Reinsperger, T., Proudfoot, A., Denay, R., Frommlet, A., Henry, C., Hommel, U., Gossert, A. D., Luy, B., and Frank, A. O.: Comprehensive and High-Throughput Exploration of Chemical Space Using
Broadband 19F NMR-Based Screening, Angew. Chem. Int. Ed., 59,
14809–14817, https://doi.org/10.1002/anie.202002463, 2020. a
Lurie, D. J.: Numerical design of composite radiofrequency pulses, J. Magn.
Reson., 70, 11–20, https://doi.org/10.1016/0022-2364(86)90359-8, 1986. a
Luy, B., Kobzar, K., Skinner, T. E., Khaneja, N., and Glaser, S. J.:
Construction of universal rotations from point-to-point transformations, J.
Magn. Reson., 176, 179–86, https://doi.org/10.1016/j.jmr.2005.06.002, 2005. a
Mao, J., Mareci, T. H., Scott, K. N., and Andrew, E. R.: Selective inversion
radiofrequency pulses by optimal control, J. Magn. Reson., 70,
310–318, https://doi.org/10.1016/0022-2364(86)90016-8, 1986. a
Moore, J., Jankiewicz, M., Anderson, A. W., and Gore, J. C.: Evaluation of non-selective refocusing pulses for 7 T MRI, J. Magn. Reson., 214, 212–220, https://doi.org/10.1016/j.jmr.2011.11.010, 2012. a
Odedra, S. and Wimperis, S.: Use of composite refocusing pulses to form spin echoes, J. Magn. Reson., 214, 68–75, https://doi.org/10.1016/j.jmr.2011.10.006, 2012. a
Ogura, K., Terasawa, H., and Inagaki, F.: Fully 13C-Refocused
Multidimensional 13C-Edited Pulse Schemes Using Broadband Shaped
Inversion and Refocusing Pulses, J. Magn. Reson. B, 112, 63–68,
https://doi.org/10.1006/jmrb.1996.0110, 1996. a
Poon, C. S. and Henkelman, R. M.: 180∘ refocusing pulses which are insensitive to static and radiofrequency field inhomogeneity, J. Magn. Reson., 99, 45–55, https://doi.org/10.1016/0022-2364(92)90154-y, 1992. a
Poon, C. S. and Henkelman, R. M.: Robust Refocusing Pulses of Limited Power, J. Magn. Reson. A, 116, 161–180, https://doi.org/10.1006/jmra.1995.0005, 1995. a
Power, J. E., Foroozandeh, M., Adams, R. W., Nilsson, M., Coombes, S. R., Phillips, A. R., and Morris, G. A.: Increasing the quantitative bandwidth of NMR measurements, Chem. Commun., 52, 2916–2919, https://doi.org/10.1039/c5cc10206e, 2016. a
Rosenfeld, D. and Zur, Y.: Design of adiabatic selective pulses using optimal control theory, Magn. Reson. Med., 36, 401–409, https://doi.org/10.1002/mrm.1910360311, 1996. a, b
Schulze-Sünninghausen, D., Becker, J., and Luy, B.: Rapid heteronuclear
single quantum correlation NMR spectra at natural abundance, J. Am. Chem.
Soc., 136, 1242–1245, https://doi.org/10.1021/ja411588d, 2014. a
Schulze-Sünninghausen, D., Becker, J., Koos, M. R. M., and Luy, B.:
Improvements, extensions, and practical aspects of rapid ASAP-HSQC and
ALSOFAST-HSQC pulse sequences for studying small molecules at natural
abundance, J. Magn. Reson., 281, 151–161, https://doi.org/10.1016/j.jmr.2017.05.012,
2017. a
Shaka, A. J.: Composite pulses for ultra-broadband spin inversion, Chem. Phys. Lett., 120, 201–205, https://doi.org/10.1016/0009-2614(85)87040-8, 1985. a
Shaka, A. J. and Freeman, R.: Composite pulses with dual compensation, J. Magn. Reson., 55, 487–493, https://doi.org/10.1016/0022-2364(83)90133-6, 1983. a
Shaka, A. J. and Pines, A.: Symmetric phase-alternating composite pulses, J. Magn. Reson., 71, 495–503, https://doi.org/10.1016/0022-2364(87)90249-6, 1987. a, b
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.:
Application of optimal control theory to the design of broadband excitation
pulses for high-resolution NMR, J. Magn. Reson., 163, 8–15,
https://doi.org/10.1016/s1090-7807(03)00153-8, 2003. a, b
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.: Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude, J. Magn. Reson., 167, 68–74,
https://doi.org/10.1016/j.jmr.2003.12.001, 2004. a
Skinner, T. E., Reiss, T. O., Luy, B., Khaneja, N., and Glaser, S. J.: Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses, J. Magn. Reson., 172, 17–23, https://doi.org/10.1016/j.jmr.2004.09.011, 2005. a
Skinner, T. E., Kobzar, K., Luy, B., Bendall, M. R., Bermel, W., Khaneja, N., and Glaser, S. J.: Optimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation,
J. Magn. Reson., 179, 241–249, https://doi.org/10.1016/j.jmr.2005.12.010, 2006. a, b
Skinner, T. E., Gershenzon, N. I., Nimbalkar, M., Bermel, W., Luy, B., and Glaser, S. J.: New strategies for designing robust universal rotation pulses: application to broadband refocusing at low power, J. Magn. Reson., 216,
78–87, https://doi.org/10.1016/j.jmr.2012.01.005, 2012. a
Smith, M. A., Hu, H., and Shaka, A. J.: Improved broadband inversion performance for NMR in liquids, J. Magn. Reson., 151, 269–283, https://doi.org/10.1006/jmre.2001.2364, 2001. a, b, c
Spindler, P. E., Zhang, Y., Endeward, B., Gershernzon, N., Skinner, T. E., Glaser, S. J., and Prisner, T. F.: Shaped optimal control pulses for increased excitation bandwidth in EPR, J. Magn. Reson., 218, 49–58, https://doi.org/10.1016/j.jmr.2012.02.013, 2012. a
Spindler, P. E., Waclawska, I., Endeward, B., Plackmeyer, J., Ziegler, C., and Prisner, T. F.: Carr-Purcell Pulsed Electron Double Resonance with Shaped Inversion Pulses, J. Phys. Chem. Lett., 6, 4331–4335, https://doi.org/10.1021/acs.jpclett.5b01933, 2015. a
Spindler, P. E., Schöps, P., Kallies, W., Glaser, S. J., and Prisner, T. F.: Perspectives of shaped pulses for EPR spectroscopy, J. Magn. Reson., 280, 30–45, https://doi.org/10.1016/j.jmr.2017.02.023, 2017. a
Takegoshi, K., Ogura, K., and Hikichi, K.: A perfect spin echo in a weakly homonuclear J-coupled two spin-12 system, J. Magn. Reson., 84, 611–615, https://doi.org/10.1016/0022-2364(89)90127-3, 1989. a, b
Tal, A. and Frydman, L.: Single-scan multidimensional magnetic resonance, Prog. Nucl. Magn. Reson. Spectrosc., 57, 241–292,
https://doi.org/10.1016/j.pnmrs.2010.04.001, 2010. a
Tycko, R., Cho, H. M., Schneider, E., and Pines, A.: Composite pulses without phase distortion, J. Magn. Reson., 61, 90–101, https://doi.org/10.1016/0022-2364(85)90270-7, 1985a. a, b
Tycko, R., Pines, A., and Guckenheimer, J.: Fixed point theory of iterative
excitation schemes in NMR, J. Chem. Phys., 83, 2775–2802,
https://doi.org/10.1063/1.449228, 1985b. a
Tzvetkova, P., Simova, S., and Luy, B.: P.E.HSQC: a simple experiment for simultaneous and sign-sensitive measurement of (1JCH+DCH) and (2JHH+DHH) couplings, J. Magn. Reson., 186, 193–200, https://doi.org/10.1016/j.jmr.2007.02.009, 2007. a
Van Loan, C.: Computing integrals involving the matrix exponential, IEEE Trans. Automat. Contr., 23, 395–404, https://doi.org/10.1109/tac.1978.1101743, 1978. a
Warren, W. S.: Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence, J. Chem. Phys., 81, 5437–5448, https://doi.org/10.1063/1.447644, 1984. a
Wimperis, S.: Iterative schemes for phase-distortionless composite 180∘ pulses, J. Magn. Reson., 93, 199–206,
https://doi.org/10.1016/0022-2364(91)90043-s, 1991. a
Wimperis, S.: Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments, J. Magn. Reson. A, 109, 221–231, https://doi.org/10.1006/jmra.1994.1159, 1994. a
Zax, D. B., Goelman, G., and Vega, S.: Amplitude-Modulated Composite Pulses, J. Magn. Reson., 80, 375–382, https://doi.org/10.1016/0022-2364(88)90312-5, 1988. a
Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R., and Kay, L. E.: Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex, J. Am. Chem. Soc., 119, 6711–6721, https://doi.org/10.1021/ja970224q, 1997. a
Short summary
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective transverse 90° rotations throughout their bandwidth, with a quadratic offset dependence of the phase in the x,y plane. Together with phase-matched SORDOR-180 pulses, this enables a direct implementation of the Böhlen–Bodenhausen approach for frequency-swept pulses for a type of 90°/180° pulse–delay sequence. Example pulse shapes are characterised, and an application is given with a 19F-PROJECT experiment.
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective...