Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-77-2022
https://doi.org/10.5194/mr-3-77-2022
Research article
 | 
16 May 2022
Research article |  | 16 May 2022

A portable NMR platform with arbitrary phase control and temperature compensation

Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders

Related authors

On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021,https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor
Silvio Künstner, Anh Chu, Klaus-Peter Dinse, Alexander Schnegg, Joseph E. McPeak, Boris Naydenov, Jens Anders, and Klaus Lips
Magn. Reson., 2, 673–687, https://doi.org/10.5194/mr-2-673-2021,https://doi.org/10.5194/mr-2-673-2021, 2021
Short summary
When the MOUSE leaves the house
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021,https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Instrumentation
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021,https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution
Sven Jovanovic, P. Philipp M. Schleker, Matthias Streun, Steffen Merz, Peter Jakes, Michael Schatz, Rüdiger-A. Eichel, and Josef Granwehr
Magn. Reson., 2, 265–280, https://doi.org/10.5194/mr-2-265-2021,https://doi.org/10.5194/mr-2-265-2021, 2021
Short summary
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields
Timothy J. Keller and Thorsten Maly
Magn. Reson., 2, 117–128, https://doi.org/10.5194/mr-2-117-2021,https://doi.org/10.5194/mr-2-117-2021, 2021
Short summary
ArduiTaM: accurate and inexpensive NMR auto tune and match system
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020,https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary

Cited articles

AD9835: https://www.analog.com/en/products/ad9835.html#product-overview, last access: 11 February 2022. 
Alnajjar, B. M. K., Buchau, A., Baumgartner, L., and Anders, J.: NMR magnets for portable applications using 3D printed materials, J. Magn. Reson., 326, 106934, https://doi.org/10.1016/j.jmr.2021.106934, 2021. 
Anders, J. and Boero, G.: A Low-Noise CMOS Receiver Frontend for MRI, 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 20–22 November 2008, https://doi.org/10.1109/BIOCAS.2008.4696900, 2008. 
Anders, J. and Lips, K.: MR to go, J. Magn. Reson., 306, 118–123, https://doi.org/10.1016/j.jmr.2019.07.007, 2019. 
Anders, J., Chiaramonte, G., SanGiorgio, P., and Boero, G.: A single-chip array of NMR receivers, J. Magn. Reson., 201, 239–249, https://doi.org/10.1016/j.jmr.2009.09.019, 2009. 
Download
Short summary
We have presented a CMOS-based NMR platform featuring arbitrary phase control and coherent detection in a non-zero intermediate frequency (IF) receiver architecture as well as active automatic temperature compensation. The proposed platform is centered around a custom-designed NMR-on-a-chip transceiver. The entire system achieves a phase stability well below 1° in consecutive pulse acquire experiments and keeps a normalized standard deviation in the measured T2 values of 0.45 % over 100 min.