Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-77-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-77-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A portable NMR platform with arbitrary phase control and temperature compensation
Qing Yang
Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Jianyu Zhao
Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Frederik Dreyer
Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Daniel Krüger
Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, United States
Jens Anders
CORRESPONDING AUTHOR
Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Center for Integrated Quantum Science and Technology (IQ), Stuttgart, Germany
Related authors
No articles found.
Jan Lettens, Marina Avramenko, Ilias Vandevenne, Anh Chu, Philipp Hengel, Michal Kern, Jens Anders, Peter Moens, Etienne Goovaerts, and Sofie Cambré
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-11, https://doi.org/10.5194/mr-2024-11, 2024
Revised manuscript not accepted
Short summary
Short summary
Demonstration of an ultra-compact spectrometer for electrically-detected magnetic resonance on a chip (EDMRoC) of silicon carbide MOSFETs with comparable signal-to-noise ratio as state-of-the-art conventional resonator-based EDMR. The relatively low cost, high sensitivity and limited space requirements of the EDMRoC configuration holds promise for application in basic and applied research as well as in industrial environments.
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021, https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Short summary
Novel electron spin resonance (ESR) detectors based on voltage-controlled oscillators (VCOs) have been attracting attention, mainly due to the possibility of integrating the whole ESR spectrometer onto a single printed circuit board at relatively low cost while maintaining a performance comparable to commercial solutions. We present an experimental setup where the signal is detected as a change in VCO oscillation amplitude, along with in-depth theoretical analysis of the novel readout scheme.
Silvio Künstner, Anh Chu, Klaus-Peter Dinse, Alexander Schnegg, Joseph E. McPeak, Boris Naydenov, Jens Anders, and Klaus Lips
Magn. Reson., 2, 673–687, https://doi.org/10.5194/mr-2-673-2021, https://doi.org/10.5194/mr-2-673-2021, 2021
Short summary
Short summary
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species. We present the application of an unconventional EPR detection method, rapid-scan EPR, to enhance the sensitivity on an improved design of a miniaturized EPR spectrometer implemented on a silicon microchip. Due to its size, it may be integrated into complex and harsh sample environments, enabling in situ or operando EPR measurements that have previously been inaccessible.
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021, https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary
Short summary
The NMR-MOUSE is a magnetic resonance tool for non-destructive materials testing inside a laboratory. The history and use of this sensor are reviewed with attention to issues encountered when employed outside. Improvements are outlined to facilitate outdoor measurements.
Cited articles
AD9835: https://www.analog.com/en/products/ad9835.html#product-overview, last
access: 11 February 2022.
Alnajjar, B. M. K., Buchau, A., Baumgartner, L., and Anders, J.: NMR magnets for portable applications using 3D printed materials, J. Magn. Reson., 326, 106934, https://doi.org/10.1016/j.jmr.2021.106934, 2021.
Anders, J. and Boero, G.: A Low-Noise CMOS Receiver Frontend for MRI, 2008
IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 20–22 November 2008, https://doi.org/10.1109/BIOCAS.2008.4696900, 2008.
Anders, J. and Lips, K.: MR to go, J. Magn. Reson., 306, 118–123, https://doi.org/10.1016/j.jmr.2019.07.007, 2019.
Anders, J., Chiaramonte, G., SanGiorgio, P., and Boero, G.: A single-chip
array of NMR receivers, J. Magn. Reson., 201, 239–249, https://doi.org/10.1016/j.jmr.2009.09.019, 2009.
Anders, J., SanGiorgio, P., and Boero, G.: A fully integrated IQ-receiver
for NMR microscopy, J. Magn. Reson., 209, 1–7, https://doi.org/10.1016/j.jmr.2010.12.005, 2011.
Anders, J., Handwerker, J., Ortmanns, M., and Boero, G.: A low-power
high-sensitivity single-chip receiver for NMR microscopy, J. Magn. Reson., 266, 41–50, https://doi.org/10.1016/j.jmr.2016.03.004, 2016.
Anders, J., Dreyer, F., Kruger, D., Schwartz, I., Plenio, M. B., and
Jelezko, F.: Progress in miniaturization and low-field nuclear magnetic
resonance, J. Magn. Reson., 322, 106860, https://doi.org/10.1016/j.jmr.2020.106860, 2021.
Barjat, H., Morris, G. A., Swanson, A. G., Smart, S., and Williams, S. C.
R.: Reference Deconvolution Using Multiplet Reference Signals, J. Magn. Reson. Ser. A, 116, 206–214, https://doi.org/10.1006/jmra.1995.0009, 1995.
Boero, G., de Raad Iseli, C., Besse, P. A., and Popovic, R. S.: An NMR
magnetometer with planar microcoils and integrated electronics for signal
detection and amplification, Sensor. Actuat. A-Phys., 67, 18–23, https://doi.org/10.1016/S0924-4247(97)01722-6, 1998.
Boero, G., Frounchi, J., Furrer, B., Besse, P. A., and Popovic, R. S.: Fully
integrated probe for proton nuclear magnetic resonance magnetometry, Rev. Sci. Instrum., 72, 2764–2768, https://doi.org/10.1063/1.1374599, 2001.
Bürkle, H., Schmid, K., Klotz, T., Krapf, R., and Anders, J.: A high voltage CMOS transceiver for low-field NMR with a maximum output current of 1.4 App, 2020 IEEE International Symposium on Circuits and Systems, Sevilla, Spain, 12–14 October 2020, https://doi.org/10.1109/ISCAS45731.2020.9181025, 2020.
Bürkle, H., Klotz, T., Krapf, R., and Anders, J.: A 0.1 MHz to 200 MHz
high-voltage CMOS transceiver for portable NMR systems with a maximum output
current of 2.0 App, IEEE 47th European Solid State Circuits Conference, 13–22 September 2021, Grenoble, France, https://doi.org/10.1109/ESSCIRC53450.2021.9567823, 2021.
Chen, S. S., Xu, L. Y., Wang, H. Z., and Dai, S. G.: Field-frequency lock
approach for 21.3-MHz high-performance NMR relaxation analyzer, Aip
Advances, 8, 075327, https://doi.org/10.1063/1.5038138, 2018.
Chen, Y., Jiang, X. W., Wang, J. N., Wu, Z. X., Wu, Y. C., Ni, Z. H., Yi,
H., and Lu, R. S.: Sensitive Oxidation of Sorbitol-Mediated Fe2+ by H2O2: A Reliable TD-NMR Method for Clinical Blood Glucose Detection, Anal. Chem., 93, 14153–14160, https://doi.org/10.1021/acs.analchem.1c02616, 2021.
Chu, A., Schlecker, B., Lips, K., Ortmanns, M., and Anders, J.: An 8-Channel
13 GHz ESR-on-a-Chip Injection-locked VCO-array achieving 200 µM-Concentration Sensitivity, 2018 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2018, WOS:000459205600146, https://doi.org/10.1109/ISSCC.2018.8310330, 2018.
Colnago, L. A., Wiesman, Z., Pages, G., Musse, M., Monaretto, T., Windt, C.
W., and Rondeau-Mouro, C.: Low field, time domain NMR in the agriculture and
agrifood sectors: An overview of applications in plants, foods and biofuels,
J. Magn. Reson., 323, 106899, https://doi.org/10.1016/j.jmr.2020.106899, 2021.
Gan, Z. H., Hung, I., Wang, X. L., Paulino, J., Wu, G., Litvak, I. M.,
Gor'kov, P. L., Brey, W. W., Lendi, P., Schiano, J. L., Bird, M. D., Dixon,
L. R., Toth, J., Boebinger, G. S., and Cross, T. A.: NMR spectroscopy up to
35.2 T using a series-connected hybrid magnet, J. Magn. Reson., 284, 125–136, https://doi.org/10.1016/j.jmr.2017.08.007, 2017.
Grisi, M., Gualco, G., and Boero, G.: A broadband single-chip transceiver
for multi-nuclear NMR probes, Rev. Sci. Instrum., 86, 044703, https://doi.org/10.1063/1.4916206, 2015.
Grisi, M., Vincent, F., Volpe, B., Guidetti, R., Harris, N., Beck, A., and
Boero, G.: NMR spectroscopy of single sub-nL ova with inductive
ultra-compact single-chip probes, Scientific Reports, 7, 44670, https://doi.org/10.1038/srep44670, 2017.
Ha, D., Paulsen, J., Sun, N., Song, Y. Q., and Ham, D.: Scalable NMR
spectroscopy with semiconductor chips, P. Natl. Acad. Sci. USA, 111, 11955–11960, https://doi.org/10.1073/pnas.1402015111, 2014.
Handwerker, J., Ortmanns, M., Anders, J., Eschelbach, M., Chang, P.,
Henning, A., Scheffler, K., and IEEE: An Active TX/RX NMR Probe for
Real-Time Monitoring of MRI Field Imperfections, 2013 IEEE Biomedical
Circuits and Systems Conference, Rotterdam, the Netherlands, 31 October–2 November 2013, https://doi.org/10.1109/BioCAS.2013.6679672, 2013.
Handwerker, J., Eder, M., Tibiletti, M., Rasche, V., Scheffler, K., Becker, J., Ortmanns, M., and Anders, J.: An Array of Fully-Integrated Quadrature TX/RX NMR Field Probes for MRI Trajectory Mapping, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 12–15 September 2016, WOS:000386656300052, https://doi.org/10.1109/ESSCIRC.2016.7598281, 2016.
Handwerker, J., Perez-Rodas, M., Beyerlein, M., Vincent, F., Beck, A.,
Freytag, N., Yu, X., Pohmann, R., Anders, J., and Scheffler, K.: A CMOS NMR
needle for probing brain physiology with high spatial and temporal
resolution, Nat. Methods, 17, 64–67, https://doi.org/10.1038/s41592-019-0640-3, 2020.
Hassan, M. A., Elrifai, T., Sakr, A., Kern, M., Lips, K., and Anders, J.: A
14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan
capabilities, IEEE Sensor, Sydney, Australia, 31 October–3 November 2021, WOS:000755468300056, https://doi.org/10.1109/Sensors47087.2021.9639513, 2021.
Hong, S. J. and Sun, N.: Portable CMOS NMR System With 50-kHz IF, 10-µs Dead Time, and Frequency Tracking, IEEE T. Circuits I, 68, 4576–4588, https://doi.org/10.1109/Tcsi.2021.3107286, 2021.
Hoult, D. I.: The principle of reciprocity in signal strength calculations –
A mathematical guide, Concept. Magnetic Res., 12, 173–187,
https://doi.org/10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q, 2000.
Hoult, D. I. and Richards, R. E.: Signal-to-Noise Ratio of Nuclear
Magnetic-Resonance Experiment, J. Magn. Reson., 24, 71–85,
https://doi.org/10.1016/0022-2364(76)90233-x, 1976.
Hoult, D. I., Richards, R. E., and Styles, P.: Novel Field-Frequency Lock
for a Superconducting Spectrometer, J. Magn. Reson., 30, 351–365, https://doi.org/10.1016/0022-2364(78)90106-3, 1978.
Iijima, T. and Takegoshi, K.: Compensation of effect of field instability by
reference deconvolution with phase reconstruction, J. Magn. Reson., 191,
128–134, https://doi.org/10.1016/j.jmr.2007.12.009, 2008.
Issadore, D., Min, C., Liong, M., Chung, J., Weissleder, R., and Lee, H.:
Miniature magnetic resonance system for point-of-care diagnostics, Lab Chip, 11, 2282–2287, https://doi.org/10.1039/c1lc20177h, 2011.
Kan, S., Gonord, P., Fan, M., Sauzade, M., and Courtieu, J.: Automatic Nmr
Field-Frequency Lock-Pulsed Phase Locked Loop Approach, Rev. Sci. Instrum., 49, 785–789, https://doi.org/10.1063/1.1135615, 1978.
Keeler, J.: Understanding NMR Spectroscopy, WILEY-VCH, ISBN 978-0-470-74609-7, 2013.
Kim, J., Hammer, B., and Harjani, R.: A Low Power CMOS Receiver for a Tissue
Monitoring NMR Spectrometer, Symp. VLSI Circuits, Honolulu, HI, USA, 16–18 June 2010, 221–222, https://doi.org/10.1109/Vlsic.2010.5560291, 2010.
Kim, J., Hammer, B., and Harjani, R.: A 5-300MHz CMOS Transceiver for
Multi-Nuclear NMR Spectroscopy, 2012 IEEE Custom Integrated Circuits
Conference, San Jose, CA, USA, 9–12 September 2012, WOS:000310365600071, https://doi.org/10.1109/CICC.2012.6330645, 2012.
Korzhnev, D. M., Tischenko, E. V., and Arseniev, A. S.: Off-resonance
effects in N-15 T-2 CPMG measurements, J. Biomol. NMR, 17,
231–237, https://doi.org/10.1023/A:1008348827208, 2000.
Lee, H., Sun, E., Ham, D., and Weissleder, R.: Chip-NMR biosensor for
detection and molecular analysis of cells, Nat. Med., 14, 869–874, https://doi.org/10.1038/nm.1711, 2008.
Lei, K.-M., Mak, P.-I., Law, M.-K., and Martins, R. P.: A palm-size mu NMR
relaxometer using a digital microfluidic device and a semiconductor
transceiver for chemical/biological diagnosis, Analyst, 140, 5129–5137, https://doi.org/10.1039/c5an00500k, 2015.
Lei, K. M., Mak, P. I., Law, M. K., and Martins, R. P.: A mu NMR CMOS
Transceiver Using a Butterfly-Coil Input for Integration With a Digital
Microfluidic Device Inside a Portable Magnet, IEEE J. Solid-St.
Circ., 51, 2274–2286, https://doi.org/10.1109/jssc.2016.2579158, 2016a.
Lei, K. M., Heidari, H., Mak, P. I., Law, M. K., Maloberti, F., and Martins,
R. P.: A Handheld 50pM-Sensitivity Micro-NMR CMOS Platform with B-Field
Stabilization for Multi-Type Biological/Chemical Assays, ISSCC Dig. Tech. Pap. I, San Francisco, CA, USA, 31 January–4 February 2016, WOS:000382151400197, https://doi.org/10.1109/ISSCC.2016.7418113, 2016b.
Lei, K. M., Heidari, H., Mak, P. I., Law, M. K., Maloberti, F., and Martins,
R. P.: A Handheld High-Sensitivity Micro-NMR CMOS Platform With B-Field
Stabilization for Multi-Type Biological/Chemical Assays, IEEE J.
Solid-St. Circ., 52, 284–297, https://doi.org/10.1109/jssc.2016.2591551, 2017.
Lei, K. M., Ha, D., Song, Y. Q., Westervelt, R. M., Martins, R., Mak, P. I.,
and Ham, D.: Portable NMR with Parallelism, Anal. Chem., 92,
2112–2120, https://doi.org/10.1021/acs.analchem.9b04633, 2020.
Liong, M., Hoang, A. N., Chung, J., Gural, N., Ford, C. B., Min, C., Shah,
R. R., Ahmad, R., Fernandez-Suarez, M., Fortune, S. M., Toner, M., Lee, H.,
and Weissleder, R.: Magnetic barcode assay for genetic detection of
pathogens, Nat. Commun., 4, 1752, https://doi.org/10.1038/ncomms2745, 2013.
Liu, Y., Sun, N., Lee, H., Weissleder, R., and Ham, D.: CMOS mini nuclear
magnetic resonance system and its application for biomolecular sensing, 2008
IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008, 140-602, https://doi.org/10.1109/ISSCC.2008.4523096, 2008.
Minard, K. R. and Wind, R. A.: Solenoidal microcoil design – Part II:
Optimizing winding parameters for maximum signal-to-noise performance,
Concept. Magnetic Res., 13, 190–210, https://doi.org/10.1002/cmr.1008, 2001.
Morris, G. A.: Compensation of Instrumental Imperfections by Deconvolution
Using an Internal Reference Signal, J. Magn. Reson., 80, 547–552, https://doi.org/10.1016/0022-2364(88)90253-3, 1988.
Morris, G. A., Barjat, H., and Horne, T. J.: Reference deconvolution
methods, Prog. Nucl. Mag. Res. Sp., 31, 197–257, https://doi.org/10.1016/S0079-6565(97)00011-3, 1997.
Peng, W. K., Kong, T. F., Ng, C. S., Chen, L., Huang, Y. X., Bhagat, A. A.
S., Nguyen, N. T., Preiser, P. R., and Han, J.: Micromagnetic resonance
relaxometry for rapid label-free malaria diagnosis, Nat. Med., 20,
1069–1073, https://doi.org/10.1038/nm.3622, 2014.
Rahman, A.-U., Choudhary, M. I., and Wahab, A.-T.: Creating NMR Signals, in:
Solving problems with NMR spectroscopy, Academic Press, 35–98, https://doi.org/10.1016/B978-0-12-411589-7.00002-4, 2016.
Rudszuck, T., Nirschl, H., and Guthausen, G.: Perspectives in process
analytics using low field NMR, J. Magn. Reson., 323, 106897, https://doi.org/10.1016/j.jmr.2020.106897, 2021.
Singh, K. and Blumich, B.: Compact low-field NMR spectroscopy and
chemometrics: A tool box for quality control of raw rubber, Polymer, 141,
154–165, https://doi.org/10.1016/j.polymer.2018.02.057, 2018.
Solmaz, N. S., Grisi, M., Matheoud, A. V., Gualco, G., and Boero, G.:
Single-Chip Dynamic Nuclear Polarization Microsystem, Anal. Chem.,
92, 9782–9789, https://doi.org/10.1021/acs.analchem.0c01221, 2020.
Stapf, S. H. S.-I.: NMR imaging in chemical engineering, WILEY-VCH, ISBN 978-3-527-60719-8, 2010.
Sun, N., Liu, Y., Lee, H., Weissleder, R., and Ham, D.: CMOS RF biosensor
utilizing nuclear magnetic resonance, IEEE J. Solid-St. Circ.,
44, 1629–1643, https://doi.org/10.1109/JSSC.2009.2017007, 2009.
Sun, N., Yoon, T.-J., Lee, H., Andress, W., Weissleder, R., and Ham, D.:
Palm NMR and 1-chip NMR, IEEE J. Solid-St. Circ., 46, 342–352, https://doi.org/10.1109/JSSC.2010.2074630, 2011.
Takahashi, M., Ebisawa, Y., Tennmei, K., Yanagisawa, Y., Hosono, M.,
Takasugi, K., Hase, T., Miyazaki, T., Fujito, T., Nakagome, H., Kiyoshi, T.,
Yamazaki, T., and Maeda, H.: Towards a beyond 1 GHz solid-state nuclear
magnetic resonance: External lock operation in an external current mode for
a 500 MHz nuclear magnetic resonance, Rev. Sci. Instrum., 83, 105110, https://doi.org/10.1063/1.4757576, 2012.
Wu, N. A., Peck, T. L., Webb, A. G., Magin, R. L., and Sweedler, J. V.:
H-1-NMR Spectroscopy on the Nanoliter Scale for Static and Online
Measurements, Anal. Chem., 66, 3849–3857, https://doi.org/10.1021/ac00094a003,
1994.
Wu, Z. X., Lu, R. S., Jiang, X. W., Wang, J. N., Chen, Y., Feng, P., Xie, Z.
H., Ni, Z. H., Yi, H., and Xiao, D.: An NMR Relaxation Method of
Characterizing Hydrogen-Bearing Crystalline Solid Phases in Hydrated Cement
Paste, IEEE T. Instrum. Meas., 71, 6000609, https://doi.org/10.1109/TIM.2021.3137163, 2021.
Yang, Q., Wang, J. N., Hu, Z., Ni, Z. H., Lu, R. S., and Yi, H.: A low-cost,
miniature Halbach magnet designed for portable time domain NMR, Int. J.
Appl. Electromagn. Mech., 65, 59–73, https://doi.org/10.3233/Jae-200001, 2021.
Yu, P., Xu, Y. J., Wu, Z. Y., Chang, Y., Chen, Q. Y., and Yang, X. D.: A
low-cost home-built NMR using Halbach magnet, J. Magn. Reson., 294, 162–168, https://doi.org/10.1016/j.jmr.2018.07.014, 2018.
Short summary
We have presented a CMOS-based NMR platform featuring arbitrary phase control and coherent detection in a non-zero intermediate frequency (IF) receiver architecture as well as active automatic temperature compensation. The proposed platform is centered around a custom-designed NMR-on-a-chip transceiver. The entire system achieves a phase stability well below 1° in consecutive pulse acquire experiments and keeps a normalized standard deviation in the measured T2 values of 0.45 % over 100 min.
We have presented a CMOS-based NMR platform featuring arbitrary phase control and coherent...