Articles | Volume 5, issue 2
https://doi.org/10.5194/mr-5-167-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Workflow for systematic design of electrochemical in operando NMR cells by matching B0 and B1 field simulations with experiments
Related authors
Related subject area
Field: Liquid-state NMR | Topic: Instrumentation
A portable NMR platform with arbitrary phase control and temperature compensation
Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields
Magn. Reson., 3, 77–90,
2022Magn. Reson., 2, 117–128,
2021Cited articles
Aguilera, A. R., MacMillan, B., Krachkovskiy, S., Sanders, K. J., Alkhayri, F., Adam Dyker, C., Goward, G. R., and Balcom, B. J.: A parallel-plate RF probe and battery cartridge for 7Li ion battery studies, J. Magn. Reson., 325, 106943, https://doi.org/10.1016/j.jmr.2021.106943, 2021. a
Bazak, J. D., Allen, J. P., Krachkovskiy, S. A., and Goward, G. R.: Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI, J. Electrochem. Soc., 167, 140518, https://doi.org/10.1149/1945-7111/abc0c9, 2020. a, b
Benders, S., Gomes, B. F., Carmo, M., Colnago, L. A., and Blümich, B.: In-situ MRI velocimetry of the magnetohydrodynamic effect in electrochemical cells, J. Magn. Reson., 312, 106692, https://doi.org/10.1016/j.jmr.2020.106692, 2020. a
Bhattacharyya, R., Key, B., Chen, H., Best, A. S., Hollenkamp, A. F., and Grey, C. P.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries, Nat. Mater., 9, 504–510, https://doi.org/10.1038/nmat2764, 2010. a
Borzutzki, K. and Brunklaus, G.: Chapter Three – Magnetic Resonance Imaging Studies of the Spatial Distribution of Charge Carriers, in: Annual Reports on NMR Spectroscopy, edited by: Webb, G. A., Vol. 91, 115–141, Academic Press, ISBN 0066-4103, https://doi.org/10.1016/bs.arnmr.2016.12.003, 2017. a