Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-173-2025
https://doi.org/10.5194/mr-6-173-2025
Research article
 | 
17 Jul 2025
Research article |  | 17 Jul 2025

Coherence locking in a parallel nuclear magnetic resonance probe defends against gradient field spillover

Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink

Related authors

Robust Bilinear Rotations II
Yannik T. Woordes and Burkhard Luy
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-13,https://doi.org/10.5194/mr-2025-13, 2025
Preprint under review for MR
Short summary
Spin prepolarization with a compact superconducting magnet
Paul Jelden, Magnus Dam, Jens Hänisch, Martin Börner, Sören Lehmkuhl, Bernhard Holtzapfel, Tabea Arndt, and Jan Gerrit Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-10,https://doi.org/10.5194/mr-2025-10, 2025
Revised manuscript under review for MR
Short summary
Automated manufacturing process for sustainable prototyping of nuclear magnetic resonance transceivers
Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer
Magn. Reson., 6, 199–210, https://doi.org/10.5194/mr-6-199-2025,https://doi.org/10.5194/mr-6-199-2025, 2025
Short summary
A perspective for magic angle spinning above 250 kHz – OptiMAS
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24,https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022,https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary

Cited articles

Barskiy, D. A., Salnikov, O. G., Romanov, A. S., Feldman, M. A., Coffey, A. M., Kovtunov, K. V., Koptyug, I. V., and Chekmenev, E. Y.: NMR Spin-Lock Induced Crossing (SLIC) Dispersion and Long-Lived Spin States of Gaseous Propane at Low Magnetic Field (0.05T), J. Magn. Reson., 276, 78–85, https://doi.org/10.1016/j.jmr.2017.01.014, 2017. a
Becker, M., Cheng, Y.-T., Voigt, A., Chenakkara, A., He, M., Lehmkuhl, S., Jouda, M., and Korvink, J. G.: Artificial Intelligence-Driven Shimming for Parallel High Field Nuclear Magnetic Resonance, Sci. Rep., 13, 17983, https://doi.org/10.1038/s41598-023-45021-6, 2023. a
Cheng, Y.-T., Jouda, M., and Korvink, J.: Sample-Centred Shimming Enables Independent Parallel NMR Detection, Sci. Rep., 12, 14149, https://doi.org/10.1038/s41598-022-17694-y, 2022. a
Ciobanu, L., Jayawickrama, D. A., Zhang, X., Webb, A. G., and Sweedler, J. V.: Measuring Reaction Kinetics by Using Multiple Microcoil NMR Spectroscopy, Angew. Chem. Int. Ed., 42, 4669–4672, https://doi.org/10.1002/anie.200351901, 2003. a
COMSOL AB: COMSOL Multiphysics® Version 6.1, https://www.comsol.com (last access: 25 September 2024), 2022. a
Download
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Share