Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-173-2025
https://doi.org/10.5194/mr-6-173-2025
Research article
 | 
17 Jul 2025
Research article |  | 17 Jul 2025

Coherence locking in a parallel nuclear magnetic resonance probe defends against gradient field spillover

Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink

Related authors

Spin prepolarization with a compact superconducting magnet
Paul Jelden, Magnus Dam, Jens Hänisch, Martin Börner, Sören Lehmkuhl, Bernhard Holtzapfel, Tabea Arndt, and Jan Gerrit Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-10,https://doi.org/10.5194/mr-2025-10, 2025
Preprint under review for MR
Short summary
Automated manufacturing process for sustainable prototyping of nuclear magnetic resonance transceivers
Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer
Magn. Reson., 6, 199–210, https://doi.org/10.5194/mr-6-199-2025,https://doi.org/10.5194/mr-6-199-2025, 2025
Short summary
A perspective for magic angle spinning above 250 kHz – OptiMAS
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24,https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022,https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021,https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary

Cited articles

Barskiy, D. A., Salnikov, O. G., Romanov, A. S., Feldman, M. A., Coffey, A. M., Kovtunov, K. V., Koptyug, I. V., and Chekmenev, E. Y.: NMR Spin-Lock Induced Crossing (SLIC) Dispersion and Long-Lived Spin States of Gaseous Propane at Low Magnetic Field (0.05T), J. Magn. Reson., 276, 78–85, https://doi.org/10.1016/j.jmr.2017.01.014, 2017. a
Becker, M., Cheng, Y.-T., Voigt, A., Chenakkara, A., He, M., Lehmkuhl, S., Jouda, M., and Korvink, J. G.: Artificial Intelligence-Driven Shimming for Parallel High Field Nuclear Magnetic Resonance, Sci. Rep., 13, 17983, https://doi.org/10.1038/s41598-023-45021-6, 2023. a
Cheng, Y.-T., Jouda, M., and Korvink, J.: Sample-Centred Shimming Enables Independent Parallel NMR Detection, Sci. Rep., 12, 14149, https://doi.org/10.1038/s41598-022-17694-y, 2022. a
Ciobanu, L., Jayawickrama, D. A., Zhang, X., Webb, A. G., and Sweedler, J. V.: Measuring Reaction Kinetics by Using Multiple Microcoil NMR Spectroscopy, Angew. Chem. Int. Ed., 42, 4669–4672, https://doi.org/10.1002/anie.200351901, 2003. a
COMSOL AB: COMSOL Multiphysics® Version 6.1, https://www.comsol.com (last access: 25 September 2024), 2022. a
Download
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Share