Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-173-2025
https://doi.org/10.5194/mr-6-173-2025
Research article
 | 
17 Jul 2025
Research article |  | 17 Jul 2025

Coherence locking in a parallel nuclear magnetic resonance probe defends against gradient field spillover

Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink

Related authors

Automated manufacturing process for sustainable prototyping of NMR transceivers
Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-22,https://doi.org/10.5194/mr-2024-22, 2025
Revised manuscript accepted for MR
Short summary
A perspective for magic angle spinning above 250 kHz – OptiMAS
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24,https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022,https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021,https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Virtual decoupling to break the simplification versus resolution trade-off in nuclear magnetic resonance of complex metabolic mixtures
Cyril Charlier, Neil Cox, Sophie Martine Prud'homme, Alain Geffard, Jean-Marc Nuzillard, Burkhard Luy, and Guy Lippens
Magn. Reson., 2, 619–627, https://doi.org/10.5194/mr-2-619-2021,https://doi.org/10.5194/mr-2-619-2021, 2021
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Instrumentation
A fast sample shuttle to couple high and low magnetic fields. Applications to high-resolution relaxometry
Jorge A. Villanueva-Garibay, Andreas Tilch, Ana Paula Aguilar Alva, Guillaume Bouvignies, Frank Engelke, Fabien Ferrage, Agnes Glémot, Ulric B. le Paige, Giulia Licciardi, Claudio Luchinat, Giacomo Parigi, Philippe Pelupessy, Enrico Ravera, Alessandro Ruda, Lucas Siemons, Olof Stenström, and Jean-Max Tyburn
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-25,https://doi.org/10.5194/mr-2024-25, 2025
Revised manuscript accepted for MR
Short summary
Workflow for systematic design of electrochemical in operando NMR cells by matching B0 and B1 field simulations with experiments
Michael Schatz, Matthias Streun, Sven Jovanovic, Rüdiger-A. Eichel, and Josef Granwehr
Magn. Reson., 5, 167–180, https://doi.org/10.5194/mr-5-167-2024,https://doi.org/10.5194/mr-5-167-2024, 2024
Short summary
A portable NMR platform with arbitrary phase control and temperature compensation
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022,https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021,https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
An electrochemical cell for in operando 13C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution
Sven Jovanovic, P. Philipp M. Schleker, Matthias Streun, Steffen Merz, Peter Jakes, Michael Schatz, Rüdiger-A. Eichel, and Josef Granwehr
Magn. Reson., 2, 265–280, https://doi.org/10.5194/mr-2-265-2021,https://doi.org/10.5194/mr-2-265-2021, 2021
Short summary

Cited articles

Barskiy, D. A., Salnikov, O. G., Romanov, A. S., Feldman, M. A., Coffey, A. M., Kovtunov, K. V., Koptyug, I. V., and Chekmenev, E. Y.: NMR Spin-Lock Induced Crossing (SLIC) Dispersion and Long-Lived Spin States of Gaseous Propane at Low Magnetic Field (0.05T), J. Magn. Reson., 276, 78–85, https://doi.org/10.1016/j.jmr.2017.01.014, 2017. a
Becker, M., Cheng, Y.-T., Voigt, A., Chenakkara, A., He, M., Lehmkuhl, S., Jouda, M., and Korvink, J. G.: Artificial Intelligence-Driven Shimming for Parallel High Field Nuclear Magnetic Resonance, Sci. Rep., 13, 17983, https://doi.org/10.1038/s41598-023-45021-6, 2023. a
Cheng, Y.-T., Jouda, M., and Korvink, J.: Sample-Centred Shimming Enables Independent Parallel NMR Detection, Sci. Rep., 12, 14149, https://doi.org/10.1038/s41598-022-17694-y, 2022. a
Ciobanu, L., Jayawickrama, D. A., Zhang, X., Webb, A. G., and Sweedler, J. V.: Measuring Reaction Kinetics by Using Multiple Microcoil NMR Spectroscopy, Angew. Chem. Int. Ed., 42, 4669–4672, https://doi.org/10.1002/anie.200351901, 2003. a
COMSOL AB: COMSOL Multiphysics® Version 6.1, https://www.comsol.com (last access: 25 September 2024), 2022. a
Download
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Share