Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-273-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-273-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-lived states involving a manifold of fluorine-19 spins in fluorinated aliphatic chains
Coline Wiame
Chimie Physique et Chimie du Vivant (CPCV, UMR 8228), Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, 75005, France
Sebastiaan Van Dyck
Chimie Physique et Chimie du Vivant (CPCV, UMR 8228), Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, 75005, France
Kirill Sheberstov
CORRESPONDING AUTHOR
Chimie Physique et Chimie du Vivant (CPCV, UMR 8228), Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, 75005, France
Aiky Razanahoera
Chimie Physique et Chimie du Vivant (CPCV, UMR 8228), Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, 75005, France
Geoffrey Bodenhausen
Chimie Physique et Chimie du Vivant (CPCV, UMR 8228), Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, 75005, France
Related authors
No articles found.
Quentin Stern and Kirill Sheberstov
Magn. Reson., 4, 87–109, https://doi.org/10.5194/mr-4-87-2023, https://doi.org/10.5194/mr-4-87-2023, 2023
Short summary
Short summary
This tutorial paper shows how to simulate NMR spectra at zero to ultralow fields. The process is presented in detail, including the tricks that are usually omitted from research papers and assuming as little prior knowledge from the reader as possible. In this attempt to make NMR simulation approachable, the authors wish to pay tribute to the late Prof. Konstantin L’vovich Ivanov.
Aiky Razanahoera, Anna Sonnefeld, Geoffrey Bodenhausen, and Kirill Sheberstov
Magn. Reson., 4, 47–56, https://doi.org/10.5194/mr-4-47-2023, https://doi.org/10.5194/mr-4-47-2023, 2023
Short summary
Short summary
In this work, we study the relaxivity of long-lived states (LLSs) excited across two to three CH2 groups in four different compounds and find that a commonly used polarising agent in dissolution dynamic nuclear polarization (d-DNP) does not enhance relaxation significantly. This result is important for the future implementation of d-DNP hyperpolarization of LLS.
Alexandra Yurkovskaya and Geoffrey Bodenhausen
Magn. Reson., 2, 341–342, https://doi.org/10.5194/mr-2-341-2021, https://doi.org/10.5194/mr-2-341-2021, 2021
Short summary
Geoffrey Bodenhausen
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2020-28, https://doi.org/10.5194/mr-2020-28, 2020
Revised manuscript not accepted
Cited articles
Aguilar, J. A., Nilsson, M., Bodenhausen, G., and Morris, G. A.: Spin echo NMR spectra without J modulation, Chem. Commun., 48, 811–813, https://doi.org/10.1039/C1CC16699A, 2012.
Bornet, A., Ji, X., Mammoli, D., Vuichoud, B., Milani, J., Bodenhausen, G., and Jannin, S.: Long-Lived States of Magnetically Equivalent Spins Populated by Dissolution-DNP and Revealed by Enzymatic Reactions, Chem. – Eur. J., 20, 17113–17118, https://doi.org/10.1002/chem.201404967, 2014.
Buchholz, C. R. and Pomerantz, W. C. K.: 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery, RSC Chem. Biol., 2, 1312–1330, https://doi.org/10.1039/D1CB00085C, 2021.
Buratto, R., Mammoli, D., Canet, E., and Bodenhausen, G.: Ligand–Protein Affinity Studies Using Long-Lived States of Fluorine-19 Nuclei, J. Med. Chem., 59, 1960–1966, https://doi.org/10.1021/acs.jmedchem.5b01583, 2016.
Cavadini, S., Dittmer, J., Antonijevic, S., and Bodenhausen, G.: Slow Diffusion by Singlet State NMR Spectroscopy, J. Am. Chem. Soc., 127, 15744–15748, https://doi.org/10.1021/ja052897b, 2005.
Cheshkov, D. A., Sheberstov, K. F., Sinitsyn, D. O., and Chertkov, V. A.: ANATOLIA: NMR software for spectral analysis of total lineshape, Magn. Reson. Chem., 56, 449–457, https://doi.org/10.1002/mrc.4689, 2018.
DeVience, S. J., Walsworth, R. L., and Rosen, M. S.: Preparation of Nuclear Spin Singlet States Using Spin-Lock Induced Crossing, Phys. Rev. Lett., 111, 173002, https://doi.org/10.1103/PhysRevLett.111.173002, 2013.
Dumez, J.-N., Hill-Cousins, J. T., Brown, R. C. D., and Pileio, G.: Long-lived localization in magnetic resonance imaging, J. Magn. Reson. San Diego Calif. 1997, 246, 27–30, https://doi.org/10.1016/j.jmr.2014.06.008, 2014.
Elliott, S. J., Kadeřávek, P., Brown, L. J., Sabba, M., Glöggler, S., O'Leary, D. J., Brown, R. C. D., Ferrage, F., and Levitt, M. H.: Field-cycling long-lived-state NMR of 15N2 spin pairs, Mol. Phys., 117, 861–867, https://doi.org/10.1080/00268976.2018.1543906, 2019.
Feng, Y., Theis, T., Liang, X., Wang, Q., Zhou, P., and Warren, W. S.: Storage of Hydrogen Spin Polarization in Long-Lived 13C2 Singlet Order and Implications for Hyperpolarized Magnetic Resonance Imaging, J. Am. Chem. Soc., 135, 9632–9635, https://doi.org/10.1021/ja404936p, 2013.
Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., and Roberts, S. M.: Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research, Environ. Toxicol. Chem., 40, 606–630, https://doi.org/10.1002/etc.4890, 2021.
Franzoni, M. B., Buljubasich, L., Spiess, H. W., and Münnemann, K.: Long-Lived 1H Singlet Spin States Originating from Para-Hydrogen in Cs-Symmetric Molecules Stored for Minutes in High Magnetic Fields, J. Am. Chem. Soc., 134, 10393–10396, https://doi.org/10.1021/ja304285s, 2012.
Harbor-Collins, H., Sabba, M., Bengs, C., Moustafa, G., Leutzsch, M., and Levitt, M. H.: NMR spectroscopy of a 18O-labeled rhodium paddlewheel complex: Isotope shifts, 103Rh–103Rh spin–spin coupling, and 103Rh singlet NMR, J. Chem. Phys., 160, 014305, https://doi.org/10.1063/5.0182233, 2024.
Kiryutin, A. S., Panov, M. S., Yurkovskaya, A. V., Ivanov, K. L., and Bodenhausen, G.: Proton Relaxometry of Long-Lived Spin Order, ChemPhysChem, 20, 766–772, https://doi.org/10.1002/cphc.201800960, 2019a.
Kiryutin, A. S., Rodin, B. A., Yurkovskaya, A. V., Ivanov, K. L., Kurzbach, D., Jannin, S., Guarin, D., Abergel, D., and Bodenhausen, G.: Transport of hyperpolarized samples in dissolution-DNP experiments, Phys. Chem. Chem. Phys., 21, 13696–13705, https://doi.org/10.1039/C9CP02600B, 2019b.
Korenchan, D. E., Lu, J., Levitt, M. H., and Jerschow, A.: 31P nuclear spin singlet lifetimes in a system with switchable magnetic inequivalence: experiment and simulation, Phys. Chem. Chem. Phys., 23, 19465–19471, https://doi.org/10.1039/D1CP03085J, 2021.
Kress, T., Walrant, A., Bodenhausen, G., and Kurzbach, D.: Long-Lived States in Hyperpolarized Deuterated Methyl Groups Reveal Weak Binding of Small Molecules to Proteins, J. Phys. Chem. Lett., https://doi.org/10.1021/acs.jpclett.9b00149, 2019.
Krivdin, L. B.: Computational aspects of 19F NMR, Russ. Chem. Rev., 89, 1040–1073, https://doi.org/10.1070/RCR4948, 2020.
Lorz, N., Czarniecki, B., Loss, S., Meier, B., and Gossert, A. D.: Higher Contrast in 1H-Observed NMR Ligand Screening with the PEARLScreen Experiment, Angew. Chem. Int. Ed., 64, e202423879, https://doi.org/10.1002/anie.202423879, 2025.
Mamone, S., Rezaei-Ghaleh, N., Opazo, F., Griesinger, C., and Glöggler, S.: Singlet-filtered NMR spectroscopy, Sci. Adv., 6, eaaz1955, https://doi.org/10.1126/sciadv.aaz1955, 2020.
Melchiorre, G., Giustiniano, F., Rathore, S., and Pileio, G.: Singlet-assisted diffusion-NMR (SAD-NMR): extending the scope of diffusion tensor imaging via singlet NMR, Front. Chem., 11, 1224336, https://doi.org/10.3389/fchem.2023.1224336, 2023.
Nerella, S. G., Singh, P., Sanam, T., and Digwal, C. S.: PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective, Front. Med., 9, https://doi.org/10.3389/fmed.2022.812270, 2022.
Pileio, G. and Ostrowska, S.: Accessing the long-time limit in diffusion NMR: The case of singlet assisted diffusive diffraction q-space, J. Magn. Reson., 285, 1–7, https://doi.org/10.1016/j.jmr.2017.10.003, 2017.
Pileio, G., Hill-Cousins, J. T., Mitchell, S., Kuprov, I., Brown, L. J., Brown, R. C. D., and Levitt, M. H.: Long-Lived Nuclear Singlet Order in Near-Equivalent 13C Spin Pairs, J. Am. Chem. Soc., 134, 17494–17497, https://doi.org/10.1021/ja3089873, 2012.
Pileio, G., Dumez, J.-N., Pop, I.-A., Hill-Cousins, J. T., and Brown, R. C. D.: Real-space imaging of macroscopic diffusion and slow flow by singlet tagging MRI, J. Magn. Reson., 252, 130–134, https://doi.org/10.1016/j.jmr.2015.01.016, 2015.
Razanahoera, A., Sonnefeld, A., Bodenhausen, G., and Sheberstov, K.: Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH2 groups, Magn. Reson., 4, 47–56, https://doi.org/10.5194/mr-4-47-2023, 2023.
Razanahoera, A., Sonnefeld, A., Sheberstov, K., Narwal, P., Minaei, M., Kouřil, K., Bodenhausen, G., and Meier, B.: Hyperpolarization of Long-Lived States of Protons in Aliphatic Chains by Bullet Dynamic Nuclear Polarization, Revealed on the Fly by Spin-Lock-Induced Crossing, J. Phys. Chem. Lett., 15, 9024–9029, https://doi.org/10.1021/acs.jpclett.4c01457, 2024.
Sabba, M., Wili, N., Bengs, C., Whipham, J. W., Brown, L. J., and Levitt, M. H.: Symmetry-based singlet–triplet excitation in solution nuclear magnetic resonance, J. Chem. Phys., 157, 134302, https://doi.org/10.1063/5.0103122, 2022.
Salvi, N., Buratto, R., Bornet, A., Ulzega, S., Rentero Rebollo, I., Angelini, A., Heinis, C., and Bodenhausen, G.: Boosting the Sensitivity of Ligand–Protein Screening by NMR of Long-Lived States, J. Am. Chem. Soc., 134, 11076–11079, https://doi.org/10.1021/ja303301w, 2012.
Sarkar, R., Vasos, P. R., and Bodenhausen, G.: Singlet-State Exchange NMR Spectroscopy for the Study of Very Slow Dynamic Processes, J. Am. Chem. Soc., 129, 328–334, https://doi.org/10.1021/ja0647396, 2007.
Shah, P. and Westwell, A. D.: The role of fluorine in medicinal chemistry: Review Article, J. Enzyme Inhib. Med. Chem., 22, 527–540, https://doi.org/10.1080/14756360701425014, 2007.
Sheberstov, K. F., Kiryutin, A. S., Bengs, C., Hill-Cousins, J. T., Brown, L. J., Brown, R. C. D., Pileio, G., Levitt, M. H., Yurkovskaya, A. V., and Ivanov, K. L.: Excitation of singlet–triplet coherences in pairs of nearly-equivalent spins, Phys. Chem. Chem. Phys., 21, 6087–6100, https://doi.org/10.1039/C9CP00451C, 2019a.
Sheberstov, K. F., Vieth, H.-M., Zimmermann, H., Rodin, B. A., Ivanov, K. L., Kiryutin, A. S., and Yurkovskaya, A. V.: Generating and sustaining long-lived spin states in 15N,15N'-azobenzene, Sci. Rep., 9, 20161, https://doi.org/10.1038/s41598-019-56734-y, 2019b.
Sheberstov, K. F., Sonnefeld, A., and Bodenhausen, G.: Collective long-lived zero-quantum coherences in aliphatic chains, J. Chem. Phys., 160, 144308, https://doi.org/10.1063/5.0196808, 2024.
Sicoli, G., Sieme, D., Overkamp, K., Khalil, M., Backer, R., Griesinger, C., Willbold, D., and Rezaei-Ghaleh, N.: Large dynamics of a phase separating arginine-glycine-rich domain revealed via nuclear and electron spins, Nat. Commun., 15, 1610, https://doi.org/10.1038/s41467-024-45788-w, 2024.
Sonnefeld, A., Bodenhausen, G., and Sheberstov, K.: Polychromatic Excitation of Delocalized Long-Lived Proton Spin States in Aliphatic Chains, Phys. Rev. Lett., 129, 183203, https://doi.org/10.1103/PhysRevLett.129.183203, 2022a.
Sonnefeld, A., Razanahoera, A., Pelupessy, P., Bodenhausen, G., and Sheberstov, K.: Long-lived states of methylene protons in achiral molecules, Sci. Adv., 8, eade2113, https://doi.org/10.1126/sciadv.ade2113, 2022b.
Stevanato, G., Hill-Cousins, J. T., Håkansson, P., Roy, S. S., Brown, L. J., Brown, R. C. D., Pileio, G., and Levitt, M. H.: A Nuclear Singlet Lifetime of More than One Hour in Room-Temperature Solution, Angew. Chem. Int. Ed., 54, 3740–3743, https://doi.org/10.1002/anie.201411978, 2015.
Takegoshi, K., Ogura, K., and Hikichi, K.: A perfect spin echo in a weakly homonuclear J-coupled two spin- system, J. Magn. Reson. 1969, 84, 611–615, https://doi.org/10.1016/0022-2364(89)90127-3, 1989.
Tayler, M. C. D.: Filters for Long-lived Spin Order, in: New Developments in NMR, Royal Society of Chemistry, 188–208, https://doi.org/10.1039/9781788019972-00188, 2020.
Tayler, M. C. D., Marco-Rius, I., Kettunen, M. I., Brindle, K. M., Levitt, M. H., and Pileio, G.: Direct Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization, J. Am. Chem. Soc., 134, 7668–7671, https://doi.org/10.1021/ja302814e, 2012.
Tourell, M. C., Pop, I.-A., Brown, L. J., Brown, R. C. D., and Pileio, G.: Singlet-assisted diffusion-NMR (SAD-NMR): redefining the limits when measuring tortuosity in porous media, Phys. Chem. Chem. Phys., 20, 13705–13713, https://doi.org/10.1039/C8CP00145F, 2018.
Vasos, P. R., Comment, A., Sarkar, R., Ahuja, P., Jannin, S., Ansermet, J.-P., Konter, J. A., Hautle, P., van den Brandt, B., and Bodenhausen, G.: Long-lived states to sustain hyperpolarized magnetization, Proc. Natl. Acad. Sci., 106, 18469–18473, https://doi.org/10.1073/pnas.0908123106, 2009.
Zhao, L., Teng, M., Zhao, X., Li, Y., Sun, J., Zhao, W., Ruan, Y., Leung, K. M. Y., and Wu, F.: Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes, Environ. Int., 175, 107951, https://doi.org/10.1016/j.envint.2023.107951, 2023.
Short summary
In achiral polyfluoroalkyl substances with two to three CF₂ groups, long-lived ¹⁹F spin states (TLLS) were measured and found to last about three times longer than T₁ in a static 11.6 T field. These lifetimes are sensitive to macromolecular binding, making them useful for screening fluorinated drugs.
In achiral polyfluoroalkyl substances with two to three CF₂ groups, long-lived ¹⁹F spin...