Articles | Volume 7, issue 1
https://doi.org/10.5194/mr-7-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-7-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Robust bilinear rotations II
Yannik T. Woordes
Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
Related authors
No articles found.
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025, https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022, https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Short summary
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective transverse 90° rotations throughout their bandwidth, with a quadratic offset dependence of the phase in the x,y plane. Together with phase-matched SORDOR-180 pulses, this enables a direct implementation of the Böhlen–Bodenhausen approach for frequency-swept pulses for a type of 90°/180° pulse–delay sequence. Example pulse shapes are characterised, and an application is given with a 19F-PROJECT experiment.
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Cyril Charlier, Neil Cox, Sophie Martine Prud'homme, Alain Geffard, Jean-Marc Nuzillard, Burkhard Luy, and Guy Lippens
Magn. Reson., 2, 619–627, https://doi.org/10.5194/mr-2-619-2021, https://doi.org/10.5194/mr-2-619-2021, 2021
Short summary
Short summary
The HSQC experiment developed by Bodenhausen and Ruben is a cornerstone for modern NMR. When used in the field of metabolomics, the common practice of decoupling in the proton dimension limits the acquisition time and hence the resolution. Here, we present a virtual decoupling method to maintain both spectral simplicity and resolution, and demonstrate how it increases information content with the zebra mussel metabolome as an example.
Cited articles
Aguilar, J. A., Nilsson, M., and Morris, G. A.: Simple Proton Spectra from Complex Spin Systems: Pure Shift NMR Spectroscopy Using BIRD, Angew. Chem. Int. Ed., 50, 9716–9717, https://doi.org/10.1002/anie.201103789, 2011. a
Becker, J. and Luy, B.: CLIP–ASAP-HSQC for Fast and Accurate Extraction of One-bond Couplings from Isotropic and Partially Aligned Molecules, Magn. Reson. Chem., 53, 878–885, https://doi.org/10.1002/mrc.4276, 2015. a
Becker, J., Koos, M. R. M., Schulze-Sünninghausen, D., and Luy, B.: ASAP-HSQC-TOCSY for Fast Spin System Identification and Extraction of Long-Range Couplings, J. Magn. Reson., 300, 76–83, https://doi.org/10.1016/j.jmr.2018.12.021, 2019. a
Bence Farkas, L., Timári, I., Kövér, K. E., and Sørensen, O. W.: Four-in-One: HSQC, HSQC-TOCSY (or H2BC), TOCSY, and Enhanced HMBC Spectra Integrated into a Single NO Relaxation Delay (NORD) NMR Experiment, J. Magn. Reson., 343, 107297, https://doi.org/10.1016/j.jmr.2022.107297, 2022. a
Bigler, P., Gjuroski, I., Chakif, D., and Furrer, J.: A Versatile Broadband Attached Proton Test Experiment for Routine 13C Nuclear Magnetic Resonance Spectroscopy, Molecules, 29, 809, https://doi.org/10.3390/molecules29040809, 2024. a
Bodor, A., Haller, J. D., Bouguechtouli, C., Theillet, F.-X., Nyitray, L., and Luy, B.: Power of Pure Shift HαCα Correlations: A Way to Characterize Biomolecules under Physiological Conditions, Anal. Chem., 92, 12423–12428, https://doi.org/10.1021/acs.analchem.0c02182, 2020. a, b
Briand, J. and Sørensen, O. W.: Simultaneous and Independent Rotations with Arbitrary Flip Angles and Phases for I, ISα, and ISβ Spin Systems, J. Magn. Reson., 135, 44–49, https://doi.org/10.1006/jmre.1998.1556, 1998. a, b
Buchanan, C. J., Bhole, G., Karunanithy, G., Casablancas-Antràs, V., Poh, A. W. J., Davis, B. G., Jones, J. A., and Baldwin, A. J.: Seedless: On-the-fly Pulse Calculation for NMR Experiments, Nat. Commun., 16, 7276, https://doi.org/10.1038/s41467-025-61663-8, 2025. a
de Fouquieres, P., Schirmer, S. G., Glaser, S. J., and Kuprov, I.: Second Order Gradient Ascent Pulse Engineering, J. Magn. Reson., 212, 412–417, https://doi.org/10.1016/j.jmr.2011.07.023, 2011. a
Donovan, K. J. and Frydman, L.: HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra, Angew. Chem. Int. Ed., 54, 594–598, https://doi.org/10.1002/anie.201407869, 2015. a
Ehni, S. and Luy, B.: BEBEtr and BUBI: J-compensated Concurrent Shaped Pulses for 1H–13C Experiments, J. Magn. Reson., 232, 7–17, https://doi.org/10.1016/j.jmr.2013.04.007, 2013. a, b, c, d
Ehni, S., Koos, M. R., Reinsperger, T., Haller, J. D., Goodwin, D. L., and Luy, B.: Concurrent J-evolving Refocusing Pulses, J. Magn. Reson., 336, 107152, https://doi.org/10.1016/j.jmr.2022.107152, 2022. a, b
Emetarom, C., Hwang, T. L., Mackin, G., and Shaka, A. J.: Isotope Editing of NMR Spectra. Excitation Sculpting Using BIRD Pulses, J. Magn. Reson. A, 115, 137–140, https://doi.org/10.1006/jmra.1995.1159, 1995. a
Fehér, K., Berger, S., and Kövér, K. E.: Accurate Determination of Small One-Bond Heteronuclear Residual Dipolar Couplings by F1 Coupled HSQC Modified with a G-BIRD(r) Module, J. Magn. Reson., 163, 340–346, https://doi.org/10.1016/S1090-7807(03)00113-7, 2003. a
Furrer, J., John, M., Kessler, H., and Luy, B.: J-Spectroscopy in the Presence of Residual Dipolar Couplings: Determination of One-Bond Coupling Constants and Scalable Resolution, J. Biomol. NMR, 37, 231–243, https://doi.org/10.1007/s10858-006-9130-x, 2007. a, b
Garbow, J. R., Weitekamp, D. P., and Pines, A.: Bilinear Rotation Decoupling of Homonuclear Scalar Interactions, Chem. Phys. Lett., 93, 504–509, https://doi.org/10.1016/0009-2614(82)83229-6, 1982. a, b, c
Geen, H. and Freeman, R.: Band-Selective Radiofrequency Pulses, J. Magn. Reson., 93, 93–141, https://doi.org/10.1016/0022-2364(91)90034-Q, 1991. a
Goodwin, D. L. and Vinding, M. S.: Accelerated Newton-Raphson GRAPE Methods for Optimal Control, Phys. Rev. Research, 5, L012042, https://doi.org/10.1103/PhysRevResearch.5.L012042, 2023. a
Goodwin, D. L., Koos, M. R. M., and Luy, B.: Second Order Phase Dispersion by Optimized Rotation Pulses, Phys. Rev. Research, 2, 033157, https://doi.org/10.1103/PhysRevResearch.2.033157, 2020. a
Gyöngyösi, T., Timári, I., Sinnaeve, D., Luy, B., and Kövér, K. E.: Expedited Nuclear Magnetic Resonance Assignment of Small- to Medium-Sized Molecules with Improved HSQC-CLIP-COSY Experiments, Anal. Chem., 93, 3096–3102, https://doi.org/10.1021/acs.analchem.0c04124, 2021. a, b
Haller, J. D.: Selective Averaging in High Resolution Liquid-State NMR: Application to Coherence Transfer and Homonuclear Decoupling, PhD thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, https://doi.org/10.5445/IR/1000137097, 2021. a, b
Haller, J. D., Bodor, A., and Luy, B.: Real-Time Pure Shift Measurements for Uniformly Isotope-Labeled Molecules Using X-selective BIRD Homonuclear Decoupling, J. Magn. Reson., 302, 64–71, https://doi.org/10.1016/j.jmr.2019.03.011, 2019. a, b, c
Haller, J. D., Bodor, A., and Luy, B.: Pure Shift Amide Detection in Conventional and TROSY-type Experiments of 13C,15N-labeled Proteins, J. Biomol. NMR, 76, 213–221, https://doi.org/10.1007/s10858-022-00406-z, 2022. a
Hansen, A. L., Kupče, Ē., Li, D.-W., Bruschweiler-Li, L., Wang, C., and Brüschweiler, R.: 2D NMR-Based Metabolomics with HSQC/TOCSY NOAH Supersequences, Anal. Chem., 93, 6112–6119, https://doi.org/10.1021/acs.analchem.0c05205, 2021. a
Hogben, H. J., Krzystyniak, M., Charnock, G. T. P., Hore, P. J., and Kuprov, I.: Spinach – A Software Library for Simulation of Spin Dynamics in Large Spin Systems, J. Magn. Reson., 208, 179–194, https://doi.org/10.1016/j.jmr.2010.11.008, 2011. a
Yong, J. R. J., Kupče, Ē., and W. Claridge, T. D.: A General Scheme for Generating NMR Supersequences Combining High- and Low-Sensitivity Experiments, Chem. Commun., 59, 7827–7830, https://doi.org/10.1039/D3CC01472J, 2023. a
Kaltschnee, L., Kolmer, A., Timári, I., Schmidts, V., W. Adams, R., Nilsson, M., E. Kövér, K., A. Morris, G., and M. Thiele, C.: “Perfecting” Pure Shift HSQC: Full Homodecoupling for Accurate and Precise Determination of Heteronuclear Couplings, Chem. Commun., 50, 15702–15705, https://doi.org/10.1039/C4CC04217D, 2014. a
Kiraly, P., Adams, R. W., Paudel, L., Foroozandeh, M., Aguilar, J. A., Timári, I., Cliff, M. J., Nilsson, M., Sándor, P., Batta, G., Waltho, J. P., Kövér, K. E., and Morris, G. A.: Real-Time Pure Shift 15N HSQC of Proteins: A Real Improvement in Resolution and Sensitivity, J. Biomol. NMR, 62, 43–52, https://doi.org/10.1007/s10858-015-9913-z, 2015. a
Kobzar, K., Skinner, T. E., Khaneja, N., Glaser, S. J., and Luy, B.: Exploring the Limits of Broadband Excitation and Inversion Pulses, J. Magn. Reson., 170, 236–243, https://doi.org/10.1016/j.jmr.2004.06.017, 2004. a
Kobzar, K., Skinner, T. E., Khaneja, N., Glaser, S. J., and Luy, B.: Exploring the Limits of Broadband Excitation and Inversion: II. Rf-power Optimized Pulses, J. Magn. Reson., 194, 58–66, https://doi.org/10.1016/j.jmr.2008.05.023, 2008. a
Koos, M. R. M. and Luy, B.: Polarization Recovery during ASAP and SOFAST/ALSOFAST-type Experiments, J. Magn. Reson., 300, 61–75, https://doi.org/10.1016/j.jmr.2018.12.014, 2019. a
Koos, M. R. M., Feyrer, H., and Luy, B.: Broadband Excitation Pulses with Variable RF Amplitude-dependent Flip Angle (RADFA), Magn. Reson. Chem., 53, 886–893, https://doi.org/10.1002/mrc.4297, 2015. a
Koos, M. R. M., Kummerlöwe, G., Kaltschnee, L., Thiele, C. M., and Luy, B.: CLIP-COSY: A Clean In-Phase Experiment for the Rapid Acquisition of COSY-type Correlations, Angew. Chem. Int. Ed., 55, 7655–7659, https://doi.org/10.1002/anie.201510938, 2016. a
Koskela, H., Kilpeläinen, I., and Heikkinen, S.: CAGEBIRD: Improving the GBIRD Filter with a CPMG Sequence, J. Magn. Reson., 170, 121–126, https://doi.org/10.1016/j.jmr.2004.06.007, 2004. a
Krishnamurthy, V. V. and Casida, J. E.: Long-Range CH Correlation 2D NMR Spectroscopy 2 – Effect of TANGO and BIRD Pulses, Magn. Reson. Chem., 26, 362–366, https://doi.org/10.1002/mrc.1260260504, 1988. a
Kurz, M., Schmieder, P., and Kessler, H.: HETLOC, an Efficient Method for Determining Heteronuclear Long-Range Couplings with Heteronuclei in Natural Abundance, Angew. Chem. Int. Ed., 30, 1329–1331, https://doi.org/10.1002/anie.199113291, 1991. a
Lingel, A., Vulpetti, A., Reinsperger, T., Proudfoot, A., Denay, R., Frommlet, A., Henry, C., Hommel, U., Gossert, A. D., Luy, B., and Frank, A. O.: Comprehensive and High-Throughput Exploration of Chemical Space Using Broadband 19F NMR-Based Screening, Angew. Chem. Int. Ed., 59, 14809–14817, https://doi.org/10.1002/anie.202002463, 2020. a
Lupulescu, A., Olsen, G. L., and Frydman, L.: Toward Single-Shot Pure-Shift Solution 1H NMR by Trains of BIRD-based Homonuclear Decoupling, J. Magn. Reson., 218, 141–146, https://doi.org/10.1016/j.jmr.2012.02.018, 2012. a, b
Luy, B., Kobzar, K., Skinner, T. E., Khaneja, N., and Glaser, S. J.: Construction of Universal Rotations from Point-to-Point Transformations, J. Magn. Reson., 176, 179–186, https://doi.org/10.1016/j.jmr.2005.06.002, 2005. a, b, c, d
Mackin, G. and Shaka, A. J.: Phase-Sensitive Two-Dimensional HMQC and HMQC-TOCSY Spectra Obtained Using Double Pulsed-Field-Gradient Spin Echoes, J. Magn. Reson. A, 118, 247–255, https://doi.org/10.1006/jmra.1996.0033, 1996. a
Maximov, I. I., Tošner, Z., and Nielsen, N. C.: Optimal Control Design of NMR and Dynamic Nuclear Polarization Experiments Using Monotonically Convergent Algorithms, J. Chem. Phys., 128, 184505, https://doi.org/10.1063/1.2903458, 2008. a
Nagy, T. M., Kövér, K. E., and Sørensen, O. W.: NORD: NO Relaxation Delay NMR Spectroscopy, Angew. Chem. Int. Ed., 60, 13587–13590, https://doi.org/10.1002/anie.202102487, 2021. a, b, c, d
Reinsperger, T. and Luy, B.: Homonuclear BIRD-decoupled Spectra for Measuring One-Bond Couplings with Highest Resolution: CLIP/CLAP-RESET and Constant-Time-CLIP/CLAP-RESET, J. Magn. Reson., 239, 110–120, https://doi.org/10.1016/j.jmr.2013.11.015, 2014. a
Sakhaii, P., Haase, B., and Bermel, W.: Experimental Access to HSQC Spectra Decoupled in All Frequency Dimensions, J. Magn. Reson., 199, 192–198, https://doi.org/10.1016/j.jmr.2009.04.016, 2009. a
Saurí, J., Bermel, W., Buevich, A. V., Sherer, E. C., Joyce, L. A., Sharaf, M. H. M., Schiff Jr., P. L., Parella, T., Williamson, R. T., and Martin, G. E.: Homodecoupled 1,1- and 1,n-ADEQUATE: Pivotal NMR Experiments for the Structure Revision of Cryptospirolepine, Angew. Chem. Int. Ed., 54, 10160–10164, https://doi.org/10.1002/anie.201502540, 2015. a
Saurí, J., Parella, T., Williamson, R. T., and Martin, G. E.: Improving the Performance of J-modulated ADEQUATE Experiments through Homonuclear Decoupling and Non-Uniform Sampling, Magn. Reson. Chem., 55, 191–197, https://doi.org/10.1002/mrc.4322, 2017. a
Schmieder, P., Kurz, M., and Kessler, H.: Determination of Heteronuclear Long-Range Couplings to Heteronuclei in Natural Abundance by Two- and Three-Dimensional NMR Spectroscopy, J. Biomol. NMR, 1, 403–420, https://doi.org/10.1007/BF02192863, 1991. a
Schulze-Sünninghausen, D., Becker, J., and Luy, B.: Rapid Heteronuclear Single Quantum Correlation NMR Spectra at Natural Abundance, J. Am. Chem. Soc., 136, 1242–1245, https://doi.org/10.1021/ja411588d, 2014. a, b
Schulze-Sünninghausen, D., Becker, J., Koos, M. R. M., and Luy, B.: Improvements, Extensions, and Practical Aspects of Rapid ASAP-HSQC and ALSOFAST-HSQC Pulse Sequences for Studying Small Molecules at Natural Abundance, J. Magn. Reson., 281, 151–161, https://doi.org/10.1016/j.jmr.2017.05.012, 2017. a, b, c
Schulze-Sünninghausen, D., Becker, J., Koos, M. R. M., and Luy, B.: LowCOST-HSQC Variants for Fast Pulsing High $\omega_1$-Resolved 2D-experiments, ChemRxiv [preprint], https://doi.org/10.26434/chemrxiv-2025-9ww52, 2025. a, b
Sebák, F., Ecsédi, P., Bermel, W., Luy, B., Nyitray, L., and Bodor, A.: Selective 1Hα NMR Methods Reveal Functionally Relevant Proline Cis/Trans Isomers in Intrinsically Disordered Proteins: Characterization of Minor Forms, Effects of Phosphorylation, and Occurrence in Proteome, Angew. Chem. Int. Ed., 61, e202108361, https://doi.org/10.1002/anie.202108361, 2022. a, b
Sørensen, O. W.: The Generalized Ernst Angle, J. Magn. Reson. Open, 19, 100148, https://doi.org/10.1016/j.jmro.2024.100148, 2024. a
Takegoshi, K., Ogura, K., and Hikichi, K.: A Perfect Spin Echo in a Weakly Homonuclear J-coupled Two Spin- System, J. Magn. Reson., 84, 611–615, https://doi.org/10.1016/0022-2364(89)90127-3, 1989. a
Timári, I., Kaltschnee, L., Kolmer, A., Adams, R. W., Nilsson, M., Thiele, C. M., Morris, G. A., and Kövér, K. E.: Accurate Determination of One-Bond Heteronuclear Coupling Constants with “Pure Shift” Broadband Proton-Decoupled CLIP/CLAP-HSQC Experiments, J. Magn. Reson., 239, 130–138, https://doi.org/10.1016/j.jmr.2013.10.023, 2014. a
Timári, I., Kaltschnee, L., H. Raics, M., Roth, F., A. Bell, N. G., W. Adams, R., Nilsson, M., Uhrín, D., A. Morris, G., M. Thiele, C., and E. Kövér, K.: Real-Time Broadband Proton-Homodecoupled CLIP/CLAP-HSQC for Automated Measurement of Heteronuclear One-Bond Coupling Constants, RSC Advances, 6, 87848–87855, https://doi.org/10.1039/C6RA14329F, 2016. a
Timári, I., Milán Nagy, T., E. Kövér, K., and W. Sørensen, O.: Synergy and Sensitivity-Balance in Concatenating Experiments in NO Relaxation Delay NMR (NORD), Chem. Commun., 58, 2516–2519, https://doi.org/10.1039/D1CC06663C, 2022. a, b
Torres, A. M., McClung, R. E. D., and Nakashima, T. T.: Compensated APT Pulse Sequences, J. Magn. Reson., 87, 189–193, https://doi.org/10.1016/0022-2364(90)90099-U, 1990. a
Tošner, Z., Vosegaard, T., Kehlet, C., Khaneja, N., Glaser, S. J., and Nielsen, N. C.: Optimal Control in NMR Spectroscopy: Numerical Implementation in SIMPSON, J. Magn. Reson., 197, 120–134, https://doi.org/10.1016/j.jmr.2008.11.020, 2009. a
Uhrín, D., Liptaj, T., and Kövér, K. E.: Modified BIRD Pulses and Design of Heteronuclear Pulse Sequences, J. Magn. Reson. A, 101, 41–46, https://doi.org/10.1006/jmra.1993.1005, 1993. a
Wimperis, S. and Freeman, R.: An Excitation Sequence Which Discriminates between Direct and Long-Range CH Coupling, J. Magn. Reson., 58, 348–353, https://doi.org/10.1016/0022-2364(84)90227-0, 1984. a
Woordes, Y. T. and Luy, B: Robust Bilinear Rotations II – Data, Karlsruhe Institute of Technology [data set], https://doi.org/10.35097/kam044sfpb43ektf, 2025. a
Yong, J. R. J., Hansen, A. L., Kupče, Ē., and Claridge, T. D. W.: Increasing Sensitivity and Versatility in NMR Supersequences with New HSQC-based Modules, J. Magn. Reson., 329, 107027, https://doi.org/10.1016/j.jmr.2021.107027, 2021. a
Short summary
Bilinear rotations like BIRD, TANGO, BANGO, and BIG-BIRD are essential building blocks in modern nuclear magnetic resonance (NMR) spectroscopy that allow the rotation of an isolated spin without couplings (i.e., bilinear interactions) in one way, while rotating spins with a matched coupling in another way. Two ways for constructing particularly robust bilinear rotations (compensated for couplings, offsets, and B1 inhomogeneities, or COB/COB3) are provided and demonstrated in both theory and experiment.
Bilinear rotations like BIRD, TANGO, BANGO, and BIG-BIRD are essential building blocks in modern...