Carravetta, M. and Levitt, M. H.: Long-Lived Nuclear Spin States in
High-Field Solution NMR, J. Am. Chem. Soc., 126, 6228–6229, 2004.
a,
b,
c
Carravetta, M. and Levitt, M. H.: Theory of Long-Lived Nuclear Spin States in
Solution Nuclear Magnetic Resonance. I. Singlet States in Low
Magnetic Field, J. Chem. Phys., 122, 214505,
https://doi.org/10.1063/1.1893983, 2005.
a
Carravetta, M., Johannessen, O. G., and Levitt, M. H.: Beyond the T1 Limit:
Singlet Nuclear Spin States in Low Magnetic Fields, Phys. Rev. Lett.,
92, 153003,
https://doi.org/10.1103/PhysRevLett.92.153003, 2004.
a,
b
Dagys, L., Ripka, B., Leutzsch, M., Moustafa, G. A. I., Eills, J., Colell, J. F. P., and Levitt, M. H.: Data set for Geminal Parahydrogen-Induced Polarization: Accumulating Long-Lived Singlet Order on Methylene Proton Pairs, University of Southampton repository,
https://doi.org/10.5258/SOTON/D1494, 2020.
a
Eills, J., Cavallari, E., Carrera, C., Budker, D., Aime, S., and Reineri, F.:
Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity
Using Parahydrogen-Hyperpolarized [1-
13C]Fumarate, J. Am. Chem.
Soc., 141, 20209–20214, 2019. a
Emondts, M., Colell, J. F. P., Blümich, B., and Schleker, P. P. M.:
Polarization Transfer Efficiency in PHIP Experiments, Phys. Chem. Chem.
Phys., 19, 21933–21937, 2017. a
Fürstner, A.: Trans-Hydrogenation, Gem-Hydrogenation, and
Trans-Hydrometalation of Alkynes: An Interim Report on an
Unorthodox Reactivity Paradigm, J. Am. Chem. Soc., 141, 11–24, 2019. a
Goez, M.: Chapter 3 Photo-CIDNP Spectroscopy, in: Annual Reports on NMR Spectroscopy, vol. 66, 77–147, Academic Press, London, UK, 2009. a
Guthertz, A., Leutzsch, M., Wolf, L. M., Gupta, P., Rummelt, S. M., Goddard,
R., Farès, C., Thiel, W., and Fürstner, A.: Half-Sandwich Ruthe
nium
Carbene Complexes Link Trans-Hydrogenation and Gem-Hydrogenation of
Internal Alkynes, J. Am. Chem. Soc., 140, 3156–3169, 2018.
a,
b,
c
Harthun, A., Selke, R., and Bargon, J.: Proof of a Reversible, Pairwise
Hydrogen Transfer during the Homogeneously Rhodium(I)-Catalyzed
Hydrogenation of
α,
β-Unsaturated Carbonic Acid
Derivatives with In Situ NMR Spectroscopy and Parahydrogen,
Angew. Chem. Int. Edit., 35, 2505–2507, 1996. a
Hübler, P., Giernoth, R., Kümmerle, G., and Bargon, J.: Investigating
the Kinetics of Homogeneous Hydrogenation Reactions Using PHIP NMR
Spectroscopy, J. Am. Chem. Soc., 121, 5311–5318, 1999. a
Hübler, P., Bargon, J., and Glaser, S. J.: Nuclear Magnetic Resonance
Quantum Computing Exploiting the Pure Spin State of Para Hydrogen,
J. Chem. Phys., 113, 2056–2059, 2000.
a,
b
Kaptein, R.: Chemically Induced Dynamic Nuclear Polarization. VIII.
Spin Dynamics and Diffusion of Radical Pairs, J. Am. Chem. Soc., 94,
6251–6262, 1972. a
Kiryutin, A. S., Panov, M. S., Yurkovskaya, A. V., Ivanov, K. L., and
Bodenhausen, G.: Proton Relaxometry of Long-Lived Spin Order,
ChemPhysChem, 20, 766–772, 2019. a
Kovtunov, K. V., Pokochueva, E. V., Salnikov, O. G., Cousin, S. F., Kurzbach,
D., Vuichoud, B., Jannin, S., Chekmenev, E. Y., Goodson, B. M., Barskiy,
D. A., and Koptyug, I. V.: Hyperpolarized NMR Spectroscopy: D-DNP,
PHIP, and SABRE Techniques, Chemistry – An Asian Journal,
13, 1857–1871, 2018.
a,
b
Leutzsch, M., Wolf, L. M., Gupta, P., Fuchs, M., Thiel, W., Farès, C., and
Fürstner, A.: Formation of Ruthenium Carbenes by Gem-Hydrogen
Transfer to Internal Alkynes: Implications for Alkyne
Trans-Hydrogenation, Angew. Chem. Int. Edit., 54,
12431–12436, 2015.
a,
b
Levitt, M. H.: Singlet Nuclear Magnetic Resonance, Annu. Rev. Phys. Chem., 63, 89–105, 2012.
a,
b
Levitt, M. H.: Long Live the Singlet State!, J. Magn. Res.,
306, 69–74, 2019. a
Lindale, J. R., Eriksson, S. L., Tanner, C. P. N., Zhou, Z., Colell, J. F. P., Zhang, G., Bae, J., Chekmenev, E. Y., Theis, T., and Warren, W. S.: Unveiling
Coherently Driven Hyperpolarization Dynamics in Signal Amplification by
Reversible Exchange, Nat. Commun., 10, 1–7, 2019.
a,
b
Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K.-N., Joo, C.-G.,
Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P.
C. A., Herzfeld, J., Temkin, R. J., and Griffin, R. G.: Dynamic Nuclear
Polarization at High Magnetic Fields, J. Chem. Phys., 128, 052211,
https://doi.org/10.1063/1.2833582, 2008.
a
Natterer, J. and Bargon, J.: Parahydrogen Induced Polarization, Prog.
Nucl. Magn. Res. Sp., 31, 293–315, 1997.
a,
b
Pileio, G. and Levitt, M. H.: Theory of Long-Lived Nuclear Spin States in
Solution Nuclear Magnetic Resonance. II. Singlet Spin Locking, J.
Chem. Phys., 130, 214501,
https://doi.org/10.1063/1.3139064, 2009.
a,
b
Pravdivtsev, A. N., Ivanov, K. L., Yurkovskaya, A. V., Petrov, P. A., Limbach,
H.-H., Kaptein, R., and Vieth, H.-M.: Spin Polarization Transfer Mechanisms
of SABRE: A Magnetic Field Dependent Study, J. Magn.
Res., 261, 73–82, 2015. a
Reineri, F., Boi, T., and Aime, S.: ParaHydrogen Induced Polarization of
13C Carboxylate Resonance in Acetate and Pyruvate, Nat. Commun., 6, 5858,
https://doi.org/10.1038/ncomms6858,
2015.
a
Ripka, B., Eills, J., Kouřilová, H., Leutzsch, M., Levitt, M. H., and
Münnemann, K.: Hyperpolarized Fumarate via Parahydrogen, Chem. Commun.,
54, 12246–12249, 2018.
a,
b,
c
Sarkar, R., Vasos, P. R., and Bodenhausen, G.: Singlet-State Exchange NMR
Spectroscopy for the Study of Very Slow Dynamic Processes, J. Am.
Chem. Soc., 129, 328–334, 2007.
a,
b,
c
Song, L., Feng, Q., Wang, Y., Ding, S., Wu, Y.-D., Zhang, X., Chung, L. W., and Sun, J.: Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins, J. Am. Chem. Soc., 141, 17441–17451,
2019.
a,
b
Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., and Ernst,
R. R.: Product Operator Formalism for the Description of NMR Pulse
Experiments, Prog. Nucl. Magn. Res. Sp., 16, 163–192, 1984. a
Theis, T., Truong, M., Coffey, A. M., Chekmenev, E. Y., and Warren, W. S.:
LIGHT-SABRE Enables Efficient in-Magnet Catalytic Hyperpolarization,
J. Magn. Res., 248, 23–26, 2014. a
Truong, M. L., Theis, T., Coffey, A. M., Shchepin, R. V., Waddell, K. W., Shi, F., Goodson, B. M., Warren, W. S., and Chekmenev, E. Y.: 15N
Hyperpolarization by Reversible Exchange Using SABRE-SHEATH, J.
Phys. Chem. C, 119, 8786–8797, 2015. a
Zhang, G., Colell, J. F. P., Glachet, T., Lindale, J. R., Reboul, V., Theis,
T., and Warren, W. S.: Terminal Diazirines Enable Reverse Polarization
Transfer from 15N2 Singlets, Angew. Chem., 131, 11235–11241,
2019.
a,
b