Articles | Volume 1, issue 2
Magn. Reson., 1, 175–186, 2020
https://doi.org/10.5194/mr-1-175-2020
Magn. Reson., 1, 175–186, 2020
https://doi.org/10.5194/mr-1-175-2020

Research article 07 Aug 2020

Research article | 07 Aug 2020

Geminal parahydrogen-induced polarization: accumulating long-lived singlet order on methylene proton pairs

Laurynas Dagys et al.

Related authors

Hyperpolarization and the physical boundary of Liouville space
Malcolm H. Levitt and Christian Bengs
Magn. Reson., 2, 395–407, https://doi.org/10.5194/mr-2-395-2021,https://doi.org/10.5194/mr-2-395-2021, 2021
Short summary

Related subject area

Field: Hyperpolarization | Topic: Theory
Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems
Thomas R. Eykyn, Stuart J. Elliott, and Philip W. Kuchel
Magn. Reson., 2, 421–446, https://doi.org/10.5194/mr-2-421-2021,https://doi.org/10.5194/mr-2-421-2021, 2021
Short summary
Hyperpolarization and the physical boundary of Liouville space
Malcolm H. Levitt and Christian Bengs
Magn. Reson., 2, 395–407, https://doi.org/10.5194/mr-2-395-2021,https://doi.org/10.5194/mr-2-395-2021, 2021
Short summary
Representation of population exchange at level anti-crossings
Bogdan A. Rodin and Konstantin L. Ivanov
Magn. Reson., 1, 347–365, https://doi.org/10.5194/mr-1-347-2020,https://doi.org/10.5194/mr-1-347-2020, 2020
Short summary
Study of electron spectral diffusion process under DNP conditions by ELDOR spectroscopy focusing on the 14N solid effect
Marie Ramirez Cohen, Akiva Feintuch, Daniella Goldfarb, and Shimon Vega
Magn. Reson., 1, 45–57, https://doi.org/10.5194/mr-1-45-2020,https://doi.org/10.5194/mr-1-45-2020, 2020
Short summary

Cited articles

Adams, R. W., Aguilar, J. A., Atkinson, K. D., Cowley, M. J., Elliott, P. I. P., Duckett, S. B., Green, G. G. R., Khazal, I. G., Lopez-Serrano, J., and Williamson, D. C.: Reversible Interactions with Para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer, Science, 323, 1708–1711, 2009. a, b
Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Golman, K.: Increase in Signal-to-Noise Ratio of >10 000 Times in Liquid-State NMR, P. Natl. Acad. Sci. USA, 100, 10158–10163, 2003. a
Barskiy, D. A., Knecht, S., Yurkovskaya, A. V., and Ivanov, K. L.: SABRE: Chemical Kinetics and Spin Dynamics of the Formation of Hyperpolarization, Prog. Nucl. Mag. Res. Sp., 114–115, 33–70, 2019. a
Bengs, C. and Levitt, M. H.: SpinDynamica: Symbolic and Numerical Magnetic Resonance in a Mathematica Environment, Magn. Reson. Chem., 56, 374–414, 2018. a, b
Bowers, C. R. and Weitekamp, D. P.: Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment, J. Am. Chem. Soc., 109, 5541–5542, 1987. a, b, c, d
Download
Short summary
We explored hydrogenation reaction with a para-spin isomer of a hydrogen molecule as a source of nuclear singlet state. As a product of this reaction, the state was populated between two protons of the methylene group. We have shown that, utilizing long-lived properties of such a nuclear spin state, a high nuclear spin polarization can be accumulated. To explain this effect we have given a kinetic model which could be potentially applied for similar schemes involving spin dynamics in chemistry.