Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-301-2020
https://doi.org/10.5194/mr-1-301-2020
Research article
 | 
09 Dec 2020
Research article |  | 09 Dec 2020

High-sensitivity Gd3+–Gd3+ EPR distance measurements that eliminate artefacts seen at short distances

Hassane EL Mkami, Robert I. Hunter, Paul A. S. Cruickshank, Michael J. Taylor, Janet E. Lovett, Akiva Feintuch, Mian Qi, Adelheid Godt, and Graham M. Smith

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Hassane EL Mkami on behalf of the Authors (13 Nov 2020)  Author's response   Manuscript 
ED: Publish as is (18 Nov 2020) by Thomas Prisner
AR by Hassane EL Mkami on behalf of the Authors (24 Nov 2020)
Download
Short summary
Through a series of DEER measurements on two Gd rulers, with Gd–Gd distances of 2.1 and 6.0 nm, we show that artefacts commonly observed when measuring short distances can be eliminated by avoiding excitation of the central transition by both the pump and observer pulses. By using a wideband induction mode sample holder at 94 GHz, we demonstrate that high-quality DEER measurements will become possible using Gd spin labels at sub-µM concentrations, with implications for in-cell DEER measurements.