Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-301-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-301-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-sensitivity Gd3+–Gd3+ EPR distance measurements that eliminate artefacts seen at short distances
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Robert I. Hunter
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Paul A. S. Cruickshank
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Michael J. Taylor
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Janet E. Lovett
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Akiva Feintuch
Department of Chemical Physics, Weizmann Institute of Science,
Rehovot, Israel
Mian Qi
Faculty of Chemistry and Center of Molecular Materials (CM),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
Adelheid Godt
Faculty of Chemistry and Center of Molecular Materials (CM),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
Graham M. Smith
CORRESPONDING AUTHOR
SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
Related authors
No articles found.
Sergei Kuzin, Victoriya N. Syryamina, Mian Qi, Moritz Fischer, Miriam Hülsmann, Adelheid Godt, Gunnar Jeschke, and Maxim Yulikov
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-19, https://doi.org/10.5194/mr-2024-19, 2024
Preprint under review for MR
Short summary
Short summary
Quantification of heterogeneous systems such as unstructured or semi-structured (bio)macromolecules is an important but challenging task. Pulse EPR methods can contribute by characterizing the local nuclear environment of a spin centre. Here, we provide a detailed assessment of a pulse EPR technique derived from a RIDME experiment. We review the theoretical principles, discuss the data analysis and demonstrate an application to a spin-labeled macromolecule supported by in silico modelling.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Thorsten Bahrenberg, Samuel M. Jahn, Akiva Feintuch, Stefan Stoll, and Daniella Goldfarb
Magn. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021, https://doi.org/10.5194/mr-2-161-2021, 2021
Short summary
Short summary
Double electron–electron resonance (DEER) provides information on the structure of proteins by attaching two spin labels to the protein at a well-defined location and measuring the distance between them. The sensitivity of the method in terms of the amount of the protein that is needed for the experiment depends strongly on the relaxation properties of the spin label and the composition of the solvent. We show how to set up the experiment for best sensitivity when the solvent is water (H2O).
Markus Teucher, Mian Qi, Ninive Cati, Henrik Hintz, Adelheid Godt, and Enrica Bordignon
Magn. Reson., 1, 285–299, https://doi.org/10.5194/mr-1-285-2020, https://doi.org/10.5194/mr-1-285-2020, 2020
Short summary
Short summary
With a pulsed dipolar electron paramagnetic resonance technique named double electron–electron resonance (DEER), we measure nanometer distances between spin labels attached to biomolecules. If more than one spin type is present (A and B), we can separately address AA, AB, and BB distances via distinct spectroscopic channels, increasing the information content per sample. Here, we investigate the appearance of unwanted channel crosstalks in DEER and suggest ways to identify and suppress them.
Nino Wili, Henrik Hintz, Agathe Vanas, Adelheid Godt, and Gunnar Jeschke
Magn. Reson., 1, 75–87, https://doi.org/10.5194/mr-1-75-2020, https://doi.org/10.5194/mr-1-75-2020, 2020
Short summary
Short summary
Measuring distances between unpaired electron spins is an important application of electron paramagnetic resonance. The longest distance that is accessible is limited by the phase memory time of the electron spins. Here we show that strong continuous microwave irradiation can significantly slow down relaxation. Additionally, we introduce a phase-modulation scheme that allows measurement of the distance during the irradiation. Our approach could thus significantly extend the accessible distances.
Marie Ramirez Cohen, Akiva Feintuch, Daniella Goldfarb, and Shimon Vega
Magn. Reson., 1, 45–57, https://doi.org/10.5194/mr-1-45-2020, https://doi.org/10.5194/mr-1-45-2020, 2020
Short summary
Short summary
DNP is a method used to enhance NMR signals by transferring polarization from radicals to nuclear spins using microwave irradiation. The EPR spectrum of the radical during the irradiation is determined by a process called spectral diffusion and affects the DNP efficiency. This process can be measured by electron–electron double resonance. We explored experimentally and theoretically the contribution of the hyperfine coupling of the 14N nuclei in the nitroxide radical to the spectral diffusion.
Jörn Lessmeier, Hans Peter Dette, Adelheid Godt, and Thomas Koop
Atmos. Chem. Phys., 18, 15841–15857, https://doi.org/10.5194/acp-18-15841-2018, https://doi.org/10.5194/acp-18-15841-2018, 2018
Short summary
Short summary
We synthesized a compound, a tetraol, which is an atmospheric oxidation product in isoprene-derived secondary organic aerosols, and studied whether the tetraol is liquid or solid depending upon temperature and relative humidity, both in pure form and in mixtures with other compounds. Our results imply a liquid state of
isoprene-derived aerosol particles in the lower troposphere at moderate humidity, but a solid state at colder upper tropospheric conditions, thus supporting modeling calculations.
Cited articles
Bahrenberg, T., Rosenski, Y., Carmieli, R., Zibzener, K., Qi, M., Frydman,
V., Godt, A., Goldfarb, D., and Feintuch, A.: Improved sensitivity for
W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped
pulses, J. Magn. Reson., 283, 1–13, https://doi.org/10.1016/j.jmr.2017.08.003, 2017.
Clayton, J. A., Keller, K., Qi, M., Wegner, J., Koch, V., Hintz, H., Godt,
A., Han, S., Jeschke, G., Sherwin, M. S., and Yulikov, M.: Quantitative
analysis of zero-field splitting parameter distributions in Gd(iii)
complexes, Phys. Chem. Chem. Phys., 20, 10470–10492, https://doi.org/10.1039/C7CP08507A, 2018.
Cohen, M. R., Frydman, V., Milko, P., Iron, M. A., Abdelkader, E. H., Lee,
M. D., Swarbrick, J. D., Raitsimring, A., Otting, G., Graham, B., Feintuch,
A., and Goldfarb, D.: Overcoming artificial broadening in Gd3+-Gd3+
distance distributions arising from dipolar pseudo-secular terms in DEER
experiments, Phys. Chem. Chem. Phys., 18, 12847–12859, https://doi.org/10.1039/c6cp00829a, 2016.
Collauto, A., Frydman, V., Lee, M. D., Abdelkader, E. H., Feintuch, A.,
Swarbrick, J. D., Graham, B., Otting, G., and Goldfarb, D.: RIDME distance
measurements using Gd(iii) tags with a narrow central transition, Phys. Chem.
Chem. Phys., 18, 19037–19049, https://doi.org/10.1039/c6cp03299k,
2016.
Cruickshank, P. A., Bolton, D. R., Robertson, D. A., Hunter, R. I., Wylde,
R. J., and Smith, G. M.: A kilowatt pulsed 94GHz electron paramagnetic
resonance spectrometer with high concentration sensitivity, high
instantaneous bandwidth, and low dead time, Rev. Sci. Instrum., 80, 103102,
https://doi.org/10.1063/1.3239402, 2009.
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., and
Goldfarb, D.: Gd(III)-Gd(III) EPR distance measurements – the range of
accessible distances and the impact of zero field splitting, Phys. Chem. Chem.
Phys., 17, 18464–18476, https://doi.org/10.1039/c5cp02602d,
2015.
Dalaloyan, A., Martorana, A., Barak, Y., Gataulin, D., Reuveny, E., Howe,
A., Elbaum, M., Albeck, S., Unger, T., Frydman, V., Abdelkader, E. H.,
Otting, G., and Goldfarb, D.: Tracking Conformational Changes in Calmodulin
in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance
Distance Measurements, Chem. Phys. Chem., 20, 1860–1868, https://doi.org/10.1002/cphc.201900341, 2019.
Doll, A., Qi, M., Wili, N., Pribitzer, S., Godt, A., and Jeschke, G.:
Gd(III)-Gd(III) distance measurements with chirp pump pulses, J.
Magn. Reson., 259, 153–162, https://doi.org/10.1016/j.jmr.2015.08.010, 2015.
EL Mkami, H., Hunter, R. I., Cruickshank, P. A. S., Taylor, M. J., Lovett, J. E., Feintuch, A, Qi, M., Godt, A., and Smith, G. M.: High sensitivity
Gd3+–Gd3+ EPR distance measurements that eliminate artefacts seen at short distances, Dataset, University of St Andrews Research Portal, https://doi.org/10.17630/96ab76ee-38f4-468f-9ea8-e947f638261f, 2020.
Feintuch, A., Otting, G., and Goldfarb, D.: Gd3+ Spin Labeling for
Measuring Distances in Biomacromolecules: Why and How?, Methods Enzymol,
563, 415–457, https://doi.org/10.1016/bs.mie.2015.07.006, 2015.
Garbuio, L., Zimmermann, K., Häussinger, D., and Yulikov, M.: Gd(III)
complexes for electron-electron dipolar spectroscopy: Effects of
deuteration, pH and zero field splitting, J. Magn. Reson.,
259, 163–173, https://doi.org/10.1016/j.jmr.2015.08.009, 2015.
Godt, A., Schulte, M., Zimmermann, H., and Jeschke, G.: How Flexible Are
Poly(para-phenyleneethynylene)s?, Angew. Chem. Int. Edit.,
45, 7560–7564, https://doi.org/10.1002/anie.200602807, 2006.
Goldfarb, D.: Gd3+ spin labeling for distance measurements by pulse EPR
spectroscopy, Phys. Chem. Chem. Phys., 16, 9685–9699, https://doi.org/10.1039/c3cp53822b, 2014.
Gordon-Grossman, M., Kaminker, I., Gofman, Y., Shai, Y., and Goldfarb, D.:
W-Band pulse EPR distance measurements in peptides using
Gd3+dipicolinic acid derivatives as spin labels, Phys. Chem. Chem. Phys.,
13, 10771–10780, https://doi.org/10.1039/c1cp00011j, 2011.
Jeschke, G. and Polyhach, Y.: Distance measurements on spin-labelled
biomacromolecules by pulsed electron paramagnetic resonance, Phys. Chem. Chem. Phys., 9, 1895–1910, https://doi.org/10.1039/B614920K, 2007.
Jeschke, G., Chechik, V., Ionita, P., Godt, A., Zimmermann, H., Banham, J.,
Timmel, C. R., Hilger, D., and Jung, H.: DeerAnalysis2006 – a comprehensive
software package for analyzing pulsed ELDOR data, Appl. Magn.
Reson., 30, 473–498, https://doi.org/10.1007/BF03166213,
2006.
Kathirvelu, V., Sato, H., Eaton, S. S., and Eaton, G. R.: Electron spin
relaxation rates for semiquinones between 25 and 295 K in glass-forming
solvents, J. Magn. Reson., 198, 111–120, https://doi.org/10.1016/j.jmr.2009.01.026, 2009.
Keller, K., Mertens, V., Qi, M., Nalepa, A. I., Godt, A., Savitsky, A.,
Jeschke, G., and Yulikov, M.: Computing distance distributions from dipolar
evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin
labels, Phys. Chem. Chem. Phys., 19, 17856–17876,
https://doi.org/10.1039/c7cp01524k, 2017.
Manukovsky, N., Feintuch, A., Kuprov, I., and Goldfarb, D.: Time domain
simulation of Gd3+-Gd3+ distance measurements by EPR, J. Chem. Phys.,
147, 044201, https://doi.org/10.1063/1.4994084, 2017.
Martorana, A., Bellapadrona, G., Feintuch, A., Di Gregorio, E., Aime, S.,
and Goldfarb, D.: Probing Protein Conformation in Cells by EPR Distance
Measurements using Gd3+ Spin Labeling, J. Am. Chem.
Soc., 136, 13458–13465, https://doi.org/10.1021/ja5079392, 2014.
Meyer, A. and Schiemann, O.: PELDOR and RIDME Measurements on a High-Spin
Manganese(II) Bisnitroxide Model Complex, J. Phys. Chem.
A, 120, 3463–3472, https://doi.org/10.1021/acs.jpca.6b00716,
2016.
Motion, C. L., Cassidy, S. L., Cruickshank, P. A. S., Hunter, R. I., Bolton,
D. R., El Mkami, H., Van Doorslaer, S., Lovett, J. E., and Smith, G. M.: The
use of composite pulses for improving DEER signal at 94 GHz, J. Magn. Reson., 278, 122–133, https://doi.org/10.1016/j.jmr.2017.03.018, 2017.
Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W.: Dead-Time
Free Measurement of Dipole-Dipole Interactions between Electron Spins,
J. Magn. Reson., 142, 331–340, https://doi.org/10.1006/jmre.1999.1944, 2000.
Potapov, A., Yagi, H., Huber, T., Jergic, S., Dixon, N. E., Otting, G., and
Goldfarb, D.: Nanometer-scale distance measurements in proteins using Gd3+
spin labeling, J. Am. Chem. Soc., 132, 9040–9048, https://doi.org/10.1021/ja1015662, 2010.
Qi, M., Groß, A., Jeschke, G., Godt, A., and Drescher, M.: Gd(III)-PyMTA
Label Is Suitable for In-Cell EPR, J. Am. Chem. Soc.,
136, 15366–15378, https://doi.org/10.1021/ja508274d, 2014.
Qi, M., Hülsmann, M., and Godt, A.: Spacers for Geometrically
Well-Defined Water-Soluble Molecular Rulers and Their Application, J. Org. Chem., 81, 2549–2571, https://doi.org/10.1021/acs.joc.6b00125, 2016.
Raitsimring, A., Astashkin, A. V., Enemark, J. H., Kaminker, I., Goldfarb,
D., Walter, E. D., Song, Y., and Meade, T. J.: Optimization of pulsed DEER
measurements for Gd-based labels: choice of operational frequencies, pulse
durations and positions, and temperature, Appl. Magn. Reson., 44, 649–670,
https://doi.org/10.1007/s00723-012-0434-6, 2013.
Raitsimring, A., Dalaloyan, A., Collauto, A., Feintuch, A., Meade, T., and
Goldfarb, D.: Zero field splitting fluctuations induced phase relaxation of
Gd3+ in frozen solutions at cryogenic temperatures, J. Magn. Reson., 248,
71–80, https://doi.org/10.1016/j.jmr.2014.09.012, 2014.
Raitsimring, A. M., Astashkin, A. V., Poluektov, O. G., and Caravan, P.:
High-field pulsed EPR and ENDOR of Gd3+ complexes in glassy solutions,
Appl. Magn. Reson., 28, 281, https://doi.org/10.1007/BF03166762, 2005.
Raitsimring, A. M., Gunanathan, C., Potapov, A., Efremenko, I., Martin, J.
M. L., Milstein, D., and Goldfarb, D.: Gd3+ Complexes as Potential Spin
Labels for High Field Pulsed EPR Distance Measurements, J.
Am. Chem. Soc., 129, 14138–14139, https://doi.org/10.1021/ja075544g, 2007.
Razzaghi, S., Qi, M., Nalepa, A. I., Godt, A., Jeschke, G., Savitsky, A.,
and Yulikov, M.: RIDME Spectroscopy with Gd(III) Centers, J.
Phys. Chem. Lett., 5, 3970–3975, https://doi.org/10.1021/jz502129t, 2014.
Shah, A., Roux, A., Starck, M., Mosely, J. A., Stevens, M., Norman, D. G.,
Hunter, R. I., El Mkami, H., Smith, G. M., Parker, D., and Lovett, J. E.: A
Gadolinium Spin Label with Both a Narrow Central Transition and Short Tether
for Use in Double Electron Electron Resonance Distance Measurements,
Inorg. Chem., 58, 3015–3025, https://doi.org/10.1021/acs.inorgchem.8b02892, 2019.
Smith, G. M., Cruickshank, P. A. S., Bolton, D. R., and Robertson, D. A.:
High-field pulse EPR instrumentation, in: Electron Paramagnetic Resonance:
Volume 21, edited by: Gilbert, B. C., The Royal Society of Chemistry, London, UK, 216–233, 2008.
Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for
spectral simulation and analysis in EPR, J. Magn. Reson., 178,
42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006.
Wojciechowski, F., Groß, A., Holder, I. T., Knörr, L., Drescher, M.,
and Hartig, J. S.: Pulsed EPR spectroscopy distance measurements of DNA
internally labelled with Gd3+-DOTA, Chem. Commun., 51,
13850–13853, https://doi.org/10.1039/C5CC04234H, 2015.
Yagi, H., Banerjee, D., Graham, B., Huber, T., Goldfarb, D., and Otting, G.:
Gadolinium tagging for high-precision measurements of 6nm distances in
protein assemblies by EPR, J. Am. Chem. Soc., 133, 10418–10421, https://doi.org/10.1021/ja204415w, 2011.
Yang, Y., Yang, F., Li, X. Y., Su, X. C., and Goldfarb, D.: In-Cell EPR
Distance Measurements on Ubiquitin Labeled with a Rigid PyMTA-Gd(III) Tag, J.
Phys. Chem. B, 123, 1050–1059, https://doi.org/10.1021/acs.jpcb.8b11442, 2019.
Short summary
Through a series of DEER measurements on two Gd rulers, with Gd–Gd distances of 2.1 and 6.0 nm, we show that artefacts commonly observed when measuring short distances can be eliminated by avoiding excitation of the central transition by both the pump and observer pulses. By using a wideband induction mode sample holder at 94 GHz, we demonstrate that high-quality DEER measurements will become possible using Gd spin labels at sub-µM concentrations, with implications for in-cell DEER measurements.
Through a series of DEER measurements on two Gd rulers, with Gd–Gd distances of 2.1 and 6.0 nm,...