Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-347-2020
https://doi.org/10.5194/mr-1-347-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

Representation of population exchange at level anti-crossings

Bogdan A. Rodin and Konstantin L. Ivanov

Related authors

Spin relaxation: is there anything new under the Sun?
Bogdan A. Rodin and Daniel Abergel
Magn. Reson., 3, 27–41, https://doi.org/10.5194/mr-3-27-2022,https://doi.org/10.5194/mr-3-27-2022, 2022
Short summary

Related subject area

Field: Hyperpolarization | Topic: Theory
The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
Non-perturbative treatment of the solid effect of dynamic nuclear polarization
Deniz Sezer
Magn. Reson., 4, 129–152, https://doi.org/10.5194/mr-4-129-2023,https://doi.org/10.5194/mr-4-129-2023, 2023
Short summary
The solid effect of dynamic nuclear polarization in liquids
Deniz Sezer
Magn. Reson., 4, 153–174, https://doi.org/10.5194/mr-4-153-2023,https://doi.org/10.5194/mr-4-153-2023, 2023
Short summary
Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems
Thomas R. Eykyn, Stuart J. Elliott, and Philip W. Kuchel
Magn. Reson., 2, 421–446, https://doi.org/10.5194/mr-2-421-2021,https://doi.org/10.5194/mr-2-421-2021, 2021
Short summary
Hyperpolarization and the physical boundary of Liouville space
Malcolm H. Levitt and Christian Bengs
Magn. Reson., 2, 395–407, https://doi.org/10.5194/mr-2-395-2021,https://doi.org/10.5194/mr-2-395-2021, 2021
Short summary

Cited articles

Adams, R. W., Aguilar, J. A., Atkinson, K. D., Cowley, M. J., Elliott, P. I. P., Duckett, S. B., Green, G. G. R., Khazal, I. G., López-Serrano, J., and Williamson, D. C.: Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer, Science, 323, 1708–1711, https://doi.org/10.1126/science.1168877, 2009. 
Ashbrook, S. E. and Wimperis, S.: Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: Second-order quadrupolar and resonance offset effects, J. Chem. Phys., 131, 194509, https://doi.org/10.1063/1.3263904, 2009. 
Barskiy, D. A., Knecht, S., Yurkovskaya, A. V., and Ivanov, K. L.: SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization, Prog. Nucl. Mag. Res. Sp., 114–115, 33–70, https://doi.org/10.1016/j.pnmrs.2019.05.005, 2019. 
Baum, J., Tycko, R., and Pines, A.: Broadband and Adiabatic Inversion of a two-Level System by Phase-Modulated Pulses, Phys. Rev. A, 32, 3435–3447, https://doi.org/10.1103/PhysRevA.32.3435, 1985. 
Bengs, C. and Levitt, M. H.: SpinDynamica: Symbolic and numerical magnetic resonance in a Mathematica environment, Magn. Reson. Chem., 56, 374–414, https://doi.org/10.1002/mrc.4642, 2018. 
Download
Short summary
This work discusses nuclear magnetic resonance (NMR) experiments, which make use of coherent spin evolution at level anti-crossings. In this work, we provide a common description of such phenomena (hopefully, a reasonably simple one), which is illustrated by a number of examples from various subfields of NMR.