Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phosphoserine for the generation of lanthanide-binding sites on proteins for paramagnetic nuclear magnetic resonance spectroscopy
Sreelakshmi Mekkattu Tharayil
ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
Mithun Chamikara Mahawaththa
ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
Choy-Theng Loh
ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
present address: Hangzhou Wayland Bioscience Co. Ltd, Hangzhou
310030, PR China
Ibidolapo Adekoya
ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
Gottfried Otting
CORRESPONDING AUTHOR
ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
Related authors
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Elwy H. Abdelkader, Nicholas F. Chilton, Ansis Maleckis, and Gottfried Otting
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-12, https://doi.org/10.5194/mr-2025-12, 2025
Preprint under review for MR
Short summary
Short summary
The small protein GB1, where all valine residues were replaced by fluorinated analogues containing one or two CH2F groups, produces 19F NMR spectra with exceptional resolution. We establish a convenient strategy for their assignment and analyse the rotameric states of the CH2F groups by virtue of 3-bond coupling constants and a γ-effect on 13C chemical shifts, which is underpinned by DFT calculations. Transient fluorine-fluorine contacts are documented by through-space 19F-19F couplings.
Yi Jiun Tan, Elwy H. Abdelkader, Iresha D. Herath, Ansis Maleckis, and Gottfried Otting
Magn. Reson., 6, 131–142, https://doi.org/10.5194/mr-6-131-2025, https://doi.org/10.5194/mr-6-131-2025, 2025
Short summary
Short summary
A protein is produced where a single amino acid type is substituted globally by a fluorinated analogue. Through-space fluorine–fluorine contacts are observed by 19F NMR (nuclear magnetic resonance) spectroscopy. Substitution of methyl groups by CH2F groups yields outstanding spectral resolution with minimal structural perturbation of the protein. Our work identifies the γ-gauche effect as the main reason for the spectral dispersion.
Damian Van Raad, Gottfried Otting, and Thomas Huber
Magn. Reson., 4, 187–197, https://doi.org/10.5194/mr-4-187-2023, https://doi.org/10.5194/mr-4-187-2023, 2023
Short summary
Short summary
A novel cell-free protein synthesis system called eCells produces amino acids based on specific isotopes using low-cost precursors. The system selectively labels methyl groups, i.e valine and leucine, with high efficiency. eCells achieve high levels of 13C incorporation and deuteration in protein preparations, making them suitable for NMR experiments of large protein complexes. They are easy to prepare, can be scaled up in volume and are a promising tool for protein production and NMR studies.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Henry W. Orton, Elwy H. Abdelkader, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 65–76, https://doi.org/10.5194/mr-3-65-2022, https://doi.org/10.5194/mr-3-65-2022, 2022
Short summary
Short summary
Installing a tag containing a paramagnetic metal ion on a protein can lead to large changes (pseudocontact shifts) in the resonances observed in NMR spectra. These are easily measured and contain valuable long-range structural information. The present work shows that a single tagging site furnished with different tags can be sufficient to localise atoms in proteins with high accuracy. In fact, this strategy works almost as well as the same number of tags distributed over multiple tagging sites.
Henry W. Orton, Iresha D. Herath, Ansis Maleckis, Shereen Jabar, Monika Szabo, Bim Graham, Colum Breen, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 1–13, https://doi.org/10.5194/mr-3-1-2022, https://doi.org/10.5194/mr-3-1-2022, 2022
Short summary
Short summary
This paper explores a method for determining the solution structure of a solvent-exposed polypeptide segment (the L3 loop), which is next to the active site of the penicillin-degrading enzyme IMP-1. Tagging three different sites on the protein with paramagnetic metal ions allowed positioning of the L3 loop with atomic resolution. It was found that the method was more robust when omitting data obtained with different metal ions if obtained with the same tag at the same tagging site.
Cited articles
Abdelkader, E. H., Yao, X., Feintuch, A., Adams, L. A., Aurelio, L., Graham,
B., Goldfarb, D., and Otting, G.: Pulse EPR-enabled interpretation of scarce
pseudocontact shifts induced by lanthanide binding tags, J. Biomol. NMR, 64,
39–51, https://doi.org/10.1007/s10858-015-0003-z, 2016.
Baneyx, F. and Mujacic, M.: Recombinant protein folding and misfolding in
Escherichia coli, Nat. Biotechnol., 22, 1399–1408, https://doi.org/10.1038/nbt1029, 2004.
Barthelmes, D., Gränz, M., Barthelmes, K., Allen, K. N., Imperiali, B.,
Prisner, T., and Schwalbe, H.: Encoded loop-lanthanide-binding tags for
long-range distance measurements in proteins by NMR and EPR spectroscopy, J.
Biomol. NMR, 63, 275–282, https://doi.org/10.1007/s10858-015-9984-x, 2015.
Barthelmes, D., Barthelmes, K., Schnorr, K., Jonker, H. R. A., Bodmer, B.,
Allen, K. N., Imperiali, B., and Schwalbe, H.: Conformational dynamics and
alignment properties of loop lanthanide-binding-tags (LBTs) studied in
interleukin-1β, J. Biomol. NMR, 68, 187–194,
https://doi.org/10.1007/s10858-017-0118-5, 2017.
Barthelmes, K., Reynolds, A. M., Peisach, E., Jonker, H. R. A., DeNunzio, N.
J., Allen, K. N., Imperiali, B., and Schwalbe, H.: Engineering encodable
lanthanide-binding tags into loop regions of proteins, J. Am. Chem. Soc.,
133, 808–819, https://doi.org/10.1021/ja104983t, 2011.
Bertini, I., Janik, M. B. L., Lee, Y.-M., Luchinat, C., and Rosato, A.:
Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a
fixed protein matrix, J. Am. Chem. Soc., 123, 4181–4188,
https://doi.org/10.1021/ja0028626, 2001.
Bleaney, B.: Nuclear magnetic resonance shifts in solution due to lanthanide
ions, J. Magn. Reson., 8, 91–100, https://doi.org/10.1016/0022-2364(72)90027-3,
1972.
Bryson, D. I., Fan, C., Guo, L.-T., Miller, C., Söll, D., and Liu, D.
R.: Continuous directed evolution of aminoacyl-tRNA synthetases, Nat. Chem.
Biol., 13, 1253–1260, https://doi.org/10.1038/nchembio.2474, 2017.
Dumas, A., Lercher, L., Spicer, C. D., and Davis, B. G.: Designing logical
codon reassignment – Expanding the chemistry in biology, Chem. Sci., 6,
50–69, https://doi.org/10.1039/C4SC01534G, 2014.
Fenwick, R. B., Esteban-Martín, S., Richter, B., Lee, D., Walter, K. F.
A., Milovanovic, D., Becker, S., Lakomek, N. A., Griesinger, C., and
Salvatella, X.: Weak long-range correlated motions in a surface patch of
ubiquitin involved in molecular recognition, J. Am. Chem. Soc., 133,
10336–10339, https://doi.org/10.1021/ja200461n, 2011.
Gallagher, T., Alexander, P., Bryan, P., and Gilliland, G. L.: Two crystal
structures of the B1 immunoglobulin-binding domain of streptococcal protein
G and comparison with NMR, Biochemistry, 33, 4721–4729,
https://doi.org/10.1021/bi00181a032, 1994.
Hass, M. A. S., Keizers, P. H. J., Blok, A., Hiruma, Y., and Ubbink, M.:
Validation of a lanthanide tag for the analysis of protein dynamics by
paramagnetic NMR spectroscopy, J. Am. Chem. Soc., 132, 9952–9953,
https://doi.org/10.1021/ja909508r, 2010.
Jia, X., Yagi, H., Su, X.-C., Stanton-Cook, M., Huber, T., and Otting, G.:
Engineering [Ln(DPA)3]3− binding sites in proteins: a widely
applicable method for tagging proteins with lanthanide ions, J. Biomol. NMR,
50, 411–420, https://doi.org/10.1007/s10858-011-9529-x, 2011.
Jones, D. H., Cellitti, S. E., Hao, X., Zhang, Q., Jahnz, M., Summerer, D.,
Schultz, P. G., Uno, T., and Geierstanger, B. H.: Site-specific labeling of
proteins with NMR-active unnatural amino acids, J. Biomol. NMR, 46, 89–100,
https://doi.org/10.1007/s10858-009-9365-4, 2009.
Joss, D. and Häussinger, D.: Design and applications of lanthanide
chelating tags for pseudocontact shift NMR spectroscopy with
biomacromolecules, Prog. Nucl. Mag. Res. Sp., 114–115, 284–312,
https://doi.org/10.1016/j.pnmrs.2019.08.002, 2019.
Keizers, P. H. J. and Ubbink, M.: Paramagnetic tagging for protein structure
and dynamics analysis, Prog. Nucl. Mag. Res. Sp., 58, 88–96,
https://doi.org/10.1016/j.pnmrs.2010.08.001, 2011.
Keller, S., Vargas, C., Zhao, H., Piszczek, G., Brautigam, C. A., and
Schuck, P.: High-precision isothermal titration calorimetry with automated
peak-shape analysis, Anal. Chem., 84, 5066–5073, https://doi.org/10.1021/ac3007522,
2012.
Lammers, C., Hahn, L. E., and Neumann, H.: Optimized plasmid systems for the
incorporation of multiple different unnatural amino acids by evolved
orthogonal ribosomes, ChemBioChem, 15, 1800–1804,
https://doi.org/10.1002/cbic.201402033, 2014.
Lee, S., Oh, S., Yang, A., Kim, J., Söll, D., Lee, D., and Park, H.-S.:
A facile strategy for selective incorporation of phosphoserine into
histones, Angew. Chem. Int. Edit., 52, 5771–5775,
https://doi.org/10.1002/anie.201300531, 2013.
Loh, C. T., Ozawa, K., Tuck, K. L., Barlow, N., Huber, T., Otting, G., and
Graham, B.: Lanthanide tags for site-specific ligation to an unnatural amino
acid and generation of pseudocontact shifts in proteins, Bioconjugate Chem.,
24, 260–268, https://doi.org/10.1021/bc300631z, 2013.
Loh, C.-T., Graham, B., Abdelkader, E. H., Tuck, K. L., and Otting, G.:
Generation of pseudocontact shifts in proteins with lanthanides using small
“clickable” nitrilotriacetic acid and iminodiacetic acid tags, Chem. Eur.
J., 21, 5084–5092, https://doi.org/10.1002/chem.201406274, 2015.
Mekkattu Tharayil, S., Mahawaththa, M. C., Adekoya, I., Otting, G.: NMR spectra, Australian National University, https://doi.org/10.25911/5fc5bd5f0f872, 2020.
Morgan, K.: Plasmids 101: origin of replication, available at:
https://blog.addgene.org/plasmid-101-origin-of-replication (last access: 27 October 2020), 2014.
Neylon, C., Brown, S. E., Kralicek, A. V., Miles, C. S., Love, C. A., and
Dixon, N. E.: Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: A model derived from DNA-Binding studies of mutant proteins by surface plasmon resonance, Biochemistry, 39, 11989–11999, https://doi.org/10.1021/bi001174w, 2000.
Nguyen, T. H. D., Ozawa, K., Stanton-Cook, M., Barrow, R., Huber, T., and
Otting, G.: Generation of pseudocontact shifts in protein NMR spectra with a
genetically encoded cobalt(II)-binding amino acid, Angew. Chem. Int. Edit.,
50, 692–694, https://doi.org/10.1002/anie.201005672, 2011.
Nitsche, C. and Otting, G.: Pseudocontact shifts in biomolecular NMR using
paramagnetic metal tags, Prog. Nucl. Mag. Res. Sp., 98–99, 20–49, https://doi.org/10.1016/j.pnmrs.2016.11.001, 2017.
Orton, H. W., Huber, T., and Otting, G.: Paramagpy: software for fitting
magnetic susceptibility tensors using paramagnetic effects measured in NMR
spectra, Magn. Reson., 1, 1–12, doi:https://doi.org/10.5194/mr-1-1-2020,
2020.
Otting, G.: Prospects for lanthanides in structural biology by NMR, J.
Biomol. NMR, 42, 1–9, https://doi.org/10.1007/s10858-008-9256-0, 2008.
Parigi, G. and Luchinat, C.: NMR consequences of the nucleus-electron spin
interactions, in: Paramagnetism in Experimental Biomolecular NMR, edited by:
Luchinat, C., Parigi, G., and Ravera, E., RSC Publishing, Cambridge, United
Kingdom, 1–41, https://doi.org/10.1039/9781788013291-00001, 2018.
Park, H.-S., Hohn, M. J., Umehara, T., Guo, L.-T., Osborne, E. M., Benner,
J., Noren, C. J., Rinehart, J., and Söll, D.: Expanding the genetic code
of Escherichia coli with phosphoserine, Science, 333, 1151–1154,
https://doi.org/10.1126/science.1207203, 2011.
Pirman, N. L., Barber, K. W., Aerni, H. R., Ma, N. J., Haimovich, A. D.,
Rogulina, S., Isaacs, F. J., and Rinehart, J.: A flexible codon in
genomically recoded Escherichia coli permits programmable protein phosphorylation, Nat. Commun., 6, 8130, https://doi.org/10.1038/ncomms9130, 2015.
Pott, M., Schmidt, M. J., and Summerer, D.: Evolved sequence contexts for
highly efficient amber suppression with noncanonical amino acids, ACS Chem.
Biol., 9, 2815–2822, https://doi.org/10.1021/cb5006273, 2014.
Qi, R. and Otting, G.: Mutant T4 DNA polymerase for easy cloning and
mutagenesis, PLOS One, 14, e0211065, https://doi.org/10.1371/journal.pone.0211065, 2019.
Saio, T. and Ishimori, K.: Accelerating structural life science by
paramagnetic lanthanide probe methods, BBA-Gen. Subjects,
1864, 129332, https://doi.org/10.1016/j.bbagen.2019.03.018, 2020.
Saio, T., Ogura, K., Yokochi, M., Kobashigawa, Y., and Inagaki, F.:
Two-point anchoring of a lanthanide-binding peptide to a target protein
enhances the paramagnetic anisotropic effect, J. Biomol. NMR, 44, 157–166,
https://doi.org/10.1007/s10858-009-9325-z, 2009.
Saio, T., Yokochi, M., Kumeta, H., and Inagaki, F.: PCS-based structure
determination of protein–protein complexes, J. Biomol. NMR, 46, 271–280,
https://doi.org/10.1007/s10858-010-9401-4, 2010.
Saio, T., Ogura, K., Shimizu, K., Yokochi, M., Burke, T. R., and Inagaki,
F.: An NMR strategy for fragment-based ligand screening utilizing a
paramagnetic lanthanide probe, J. Biomol. NMR, 51, 395–408,
https://doi.org/10.1007/s10858-011-9566-5, 2011.
Shishmarev, D. and Otting, G.: How reliable are pseudocontact shifts induced
in proteins and ligands by mobile paramagnetic metal tags? A modelling
study, J. Biomol. NMR, 56, 203–216, https://doi.org/10.1007/s10858-013-9738-6, 2013.
Su, X.-C. and Chen, J.-L.: Site-specific tagging of proteins with paramagnetic ions for determination of protein structures in solution and in cells, Acc. Chem. Res., 52, 1675–1686, https://doi.org/10.1021/acs.accounts.9b00132, 2019.
Su, X.-C. and Otting, G.: Paramagnetic labelling of proteins and
oligonucleotides for NMR, J. Biomol. NMR, 46, 101–112,
https://doi.org/10.1007/s10858-009-9331-1, 2010.
Swarbrick, J. D., Ung, P., Su, X.-C., Maleckis, A., Chhabra, S., Huber, T.,
Otting, G., and Graham, B.: Engineering of a bis-chelator motif into a
protein α-helix for rigid lanthanide binding and paramagnetic NMR
spectroscopy, Chem. Commun., 47, 7368–7370, https://doi.org/10.1039/C1CC11893E, 2011.
Swarbrick, J. D., Ung, P., Dennis, M. L., Lee, M. D., Chhabra, S., and
Graham, B.: Installation of a rigid EDTA-like motif into a protein α-helix for paramagnetic NMR spectroscopy with cobalt(II) ions, Chem. Eur.
J., 22, 1228–1232, https://doi.org/10.1002/chem.201503139, 2016.
Welegedara, A. P., Yang, Y., Lee, M. D., Swarbrick, J. D., Huber, T.,
Graham, B., Goldfarb, D., and Otting, G.: Double-arm lanthanide tags deliver
narrow Gd3+–Gd3+ distance distributions in double
electron–electron resonance (DEER) measurements, Chem.-Eur. J., 23,
11694–11702, https://doi.org/10.1002/chem.201702521, 2017.
Xie, Y., Jiang, Y., and Ben-Amotz, D.: Detection of amino acid and peptide
phosphate protonation using Raman spectroscopy, Anal. Biochem., 343,
223–230, https://doi.org/10.1016/j.ab.2005.05.038, 2005.
Yagi, H., Loscha, K. V., Su, X.-C., Stanton-Cook, M., Huber, T., and Otting,
G.: Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3−
for protein structure analysis, J. Biomol. NMR, 47, 143–153,
https://doi.org/10.1007/s10858-010-9416-x, 2010.
Yang, A., Ha, S., Ahn, J., Kim, R., Kim, S., Lee, Y., Kim, J., Söll, D.,
Lee, H.-Y., and Park, H.-S.: A chemical biology route to site-specific
authentic protein modifications, Science, 354, 623–626,
https://doi.org/10.1126/science.aah4428, 2016.
Short summary
A new way is presented for creating lanthanide binding sites on proteins using site-specifically introduced phosphoserine residues. The paramagnetic effects of lanthanides generate long-range effects, which contain structural information and are readily measured by NMR spectroscopy. Excellent correlations between experimentally observed and back-calculated pseudocontact shifts attest to very good immobilization of the lanthanide ions relative to the proteins.
A new way is presented for creating lanthanide binding sites on proteins using site-specifically...
Special issue