Bertini, I., Janik, M. B. L., Lee, Y.-M., Luchinat, C., and Rosato, A.:
Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a
fixed protein matrix, J. Am. Chem. Soc., 123, 4181–4188,
https://doi.org/10.1021/ja0028626, 2001.
Bleaney, B.: Nuclear magnetic resonance shifts in solution due to lanthanide
ions, J. Magn. Reson., 8, 91–100, https://doi.org/10.1016/0022-2364(72)90027-3,
1972.
Bryson, D. I., Fan, C., Guo, L.-T., Miller, C., Söll, D., and Liu, D.
R.: Continuous directed evolution of aminoacyl-tRNA synthetases, Nat. Chem.
Biol., 13, 1253–1260, https://doi.org/10.1038/nchembio.2474, 2017.
Dumas, A., Lercher, L., Spicer, C. D., and Davis, B. G.: Designing logical
codon reassignment – Expanding the chemistry in biology, Chem. Sci., 6,
50–69, https://doi.org/10.1039/C4SC01534G, 2014.
Fenwick, R. B., Esteban-Martín, S., Richter, B., Lee, D., Walter, K. F.
A., Milovanovic, D., Becker, S., Lakomek, N. A., Griesinger, C., and
Salvatella, X.: Weak long-range correlated motions in a surface patch of
ubiquitin involved i
n molecular recognition, J. Am. Chem. Soc., 133,
10336–10339, https://doi.org/10.1021/ja200461n, 2011.
Gallagher, T., Alexander, P., Bryan, P., and Gilliland, G. L.: Two crystal
structures of the B1 immunoglobulin-binding domain of streptococcal protein
G and comparison with NMR, Biochemistry, 33, 4721–4729,
https://doi.org/10.1021/bi00181a032, 1994.
Hass, M. A. S., Keizers, P. H. J., Blok, A., Hiruma, Y., and Ubbink, M.:
Validation of a lanthanide tag for the analysis of protein dynamics by
paramagnetic NMR spectroscopy, J. Am. Chem. Soc., 132, 9952–9953,
https://doi.org/10.1021/ja909508r, 2010.
Jia, X., Yagi, H., Su, X.-C., Stanton-Cook, M., Huber, T., and Otting, G.:
Engineering [Ln(DPA)3]3− binding sites in proteins: a widely
applicable method for tagging proteins with lanthanide ions, J. Biomol. NMR,
50, 411–420, https://doi.org/10.1007/s10858-011-9529-x, 2011.
Jones, D. H., Cellitti, S. E., Hao, X., Zhang, Q., Jahnz, M., Summerer, D.,
Schultz, P. G., Uno, T., and Geierstanger, B. H.: Site-specific labeling of
proteins with NMR-active unnatural amino acids, J. Biomol. NMR, 46, 89–100,
https://doi.org/10.1007/s10858-009-9365-4, 2009.
Joss, D. and Häussinger, D.: Design and applications of lanthanide
chelating tags for pseudocontact shift NMR spectroscopy with
biomacromolecules, Prog. Nucl. Mag. Res. Sp., 114–115, 284–312,
https://doi.org/10.1016/j.pnmrs.2019.08.002, 2019.
Keizers, P. H. J. and Ubbink, M.: Paramagnetic tagging for protein structure
and dynamics analysis, Prog. Nucl. Mag. Res. Sp., 58, 88–96,
https://doi.org/10.1016/j.pnmrs.2010.08.001, 2011.
Keller, S., Vargas, C., Zhao, H., Piszczek, G., Brautigam, C. A., and
Schuck, P.: High-precision isothermal titration calorimetry with automated
peak-shape analysis, Anal. Chem., 84, 5066–5073, https://doi.org/10.1021/ac3007522,
2012.
Lammers, C., Hahn, L. E., and Neumann, H.: Optimized plasmid systems for the
incorporation of multiple different unnatural amino acids by evolved
orthogonal ribosomes, ChemBioChem, 15, 1800–1804,
https://doi.org/10.1002/cbic.201402033, 2014.
Lee, S., Oh, S., Yang, A., Kim, J., Söll, D., Lee, D., and Park, H.-S.:
A facile strategy for selective incorporation of phosphoserine into
histones, Angew. Chem. Int. Edit., 52, 5771–5775,
https://doi.org/10.1002/anie.201300531, 2013.
Loh, C. T., Ozawa, K., Tuck, K. L., Barlow, N., Huber, T., Otting, G., and
Graham, B.: Lanthanide tags for site-specific ligation to an unnatural amino
acid and generation of pseudocontact shifts in proteins, Bioconjugate Chem.,
24, 260–268, https://doi.org/10.1021/bc300631z, 2013.
Loh, C.-T., Graham, B., Abdelkader, E. H., Tuck, K. L., and Otting, G.:
Generation of pseudocontact shifts in proteins with lanthanides using small
“clickable” nitrilotriacetic acid and iminodiacetic acid tags, Chem. Eur.
J., 21, 5084–5092, https://doi.org/10.1002/chem.201406274, 2015.
Mekkattu Tharayil, S., Mahawaththa, M. C., Adekoya, I., Otting, G.: NMR spectra, Australian National University, https://doi.org/10.25911/5fc5bd5f0f872, 2020.
Morgan, K.: Plasmids 101: origin of replication, available at:
https://blog.addgene.org/plasmid-101-origin-of-replication (last access: 27 October 2020), 2014.
Neylon, C., Brown, S. E., Kralicek, A. V., Miles, C. S., Love, C. A., and
Dixon, N. E.: Interaction of the
Escherichia coli replication terminator protein (Tus) with DNA: A model derived from DNA-Binding studies of mutant proteins by surface plasmon resonance, Biochemistry, 39, 11989–11999, https://doi.org/10.1021/bi001174w, 2000.
Nguyen, T. H. D., Ozawa, K., Stanton-Cook, M., Barrow, R., Huber, T., and
Otting, G.: Generation of pseudocontact shifts in protein NMR spectra with a
genetically encoded cobalt(II)-binding amino acid, Angew. Chem. Int. Edit.,
50, 692–694, https://doi.org/10.1002/anie.201005672, 2011.
Nitsche, C. and Otting, G.: Pseudocontact shifts in biomolecular NMR using
paramagnetic metal tags, Prog. Nucl. Mag. Res. Sp., 98–99, 20–49, https://doi.org/10.1016/j.pnmrs.2016.11.001, 2017.
Orton, H. W., Huber, T., and Otting, G.: Paramagpy: software for fitting
magnetic susceptibility tensors using paramagnetic effects measured in NMR
spectra, Magn. Reson., 1, 1–12, doi:https://doi.org/10.5194/mr-1-1-2020,
2020.
Otting, G.: Prospects for lanthanides in structural biology by NMR, J.
Biomol. NMR, 42, 1–9, https://doi.org/10.1007/s10858-008-9256-0, 2008.
Parigi, G. and Luchinat, C.: NMR consequences of the nucleus-electron spin
interactions, in: Paramagnetism in Experimental Biomolecular NMR, edited by:
Luchinat, C., Parigi, G., and Ravera, E., RSC Publishing, Cambridge, United
Kingdom, 1–41, https://doi.org/10.1039/9781788013291-00001, 2018.
Park, H.-S., Hohn, M. J., Umehara, T., Guo, L.-T., Osborne, E. M., Benner,
J., Noren, C. J., Rinehart, J., and Söll, D.: Expanding the genetic code
of
Escherichia coli with phosphoserine, Science, 333, 1151–1154,
https://doi.org/10.1126/science.1207203, 2011.
Pirman, N. L., Barber, K. W., Aerni, H. R., Ma, N. J., Haimovich, A. D.,
Rogulina, S., Isaacs, F. J., and Rinehart, J.: A flexible codon in
genomically recoded
Escherichia coli permits programmable protein phosphorylation, Nat. Commun., 6, 8130, https://doi.org/10.1038/ncomms9130, 2015.
Pott, M., Schmidt, M. J., and Summerer, D.: Evolved sequence contexts for
highly efficient amber suppression with noncanonical amino acids, ACS Chem.
Biol., 9, 2815–2822, https://doi.org/10.1021/cb5006273, 2014.
Qi, R. and Otting, G.: Mutant T4 DNA polymerase for easy cloning and
mutagenesis, PLOS One, 14, e0211065, https://doi.org/10.1371/journal.pone.0211065, 2019.
Saio, T. and Ishimori, K.: Accelerating structural life science by
paramagnetic lanthanide probe methods, BBA-Gen. Subjects,
1864, 129332, https://doi.org/10.1016/j.bbagen.2019.03.018, 2020.
Saio, T., Ogura, K., Yokochi, M., Kobashigawa, Y., and Inagaki, F.:
Two-point anchoring of a lanthanide-binding peptide to a target protein
enhances the paramagnetic anisotropic effect, J. Biomol. NMR, 44, 157–166,
https://doi.org/10.1007/s10858-009-9325-z, 2009.
Saio, T., Yokochi, M., Kumeta, H., and Inagaki, F.: PCS-based structure
determination of protein–protein complexes, J. Biomol. NMR, 46, 271–280,
https://doi.org/10.1007/s10858-010-9401-4, 2010.
Saio, T., Ogura, K., Shimizu, K., Yokochi, M., Burke, T. R., and Inagaki,
F.: An NMR strategy for fragment-based ligand screening utilizing a
paramagnetic lanthanide probe, J. Biomol. NMR, 51, 395–408,
https://doi.org/10.1007/s10858-011-9566-5, 2011.
Shishmarev, D. and Otting, G.: How reliable are pseudocontact shifts induced
in proteins and ligands by mobile paramagneti
c metal tags? A modelling
study, J. Biomol. NMR, 56, 203–216, https://doi.org/10.1007/s10858-013-9738-6, 2013.
Su, X.-C. and Chen, J.-L.: Site-specific tagging of proteins with paramagnetic ions for determination of protein structures in solution and in cells, Acc. Chem. Res., 52, 1675–1686, https://doi.org/10.1021/acs.accounts.9b00132, 2019.
Su, X.-C. and Otting, G.: Paramagnetic labelling of proteins and
oligonucleotides for NMR, J. Biomol. NMR, 46, 101–112,
https://doi.org/10.1007/s10858-009-9331-1, 2010.
Swarbrick, J. D., Ung, P., Su, X.-C., Maleckis, A., Chhabra, S., Huber, T.,
Otting, G., and Graham, B.: Engineering of a bis-chelator motif into a
protein
α-helix for rigid lanthanide binding and paramagnetic NMR
spectroscopy, Chem. Commun., 47, 7368–7370, https://doi.org/10.1039/C1CC11893E, 2011.
Swarbrick, J. D., Ung, P., Dennis, M. L., Lee, M. D., Chhabra, S., and
Graham, B.: Installation of a rigid EDTA-like motif into a protein
α-helix for paramagnetic NMR spectroscopy with cobalt(II) ions, Chem. Eur.
J., 22, 1228–1232, https://doi.org/10.1002/chem.201503139, 2016.
Welegedara, A. P., Yang, Y., Lee, M. D., Swarbrick, J. D., Huber, T.,
Graham, B., Goldfarb, D., and Otting, G.: Double-arm lanthanide tags deliver
narrow Gd
3+–Gd
3+ distance distributions in double
electron–electron resonance (DEER) measurements, Chem.-Eur. J., 23,
11694–11702, https://doi.org/10.1002/chem.201702521, 2017.
Xie, Y., Jiang, Y., and Ben-Amotz, D.: Detection of amino acid and peptide
phosphate protonation using Raman spectroscopy, Anal. Biochem., 343,
223–230, https://doi.org/10.1016/j.ab.2005.05.038, 2005.
Yagi, H., Loscha, K. V., Su, X.-C., Stanton-Cook, M., Huber, T., and Otting,
G.: Tunable paramagnetic relaxation enhancements by [Gd(DPA)
3]
3−
for protein structure analysis, J. Biomol. NMR, 47, 143–153,
https://doi.org/10.1007/s10858-010-9416-x, 2010.
Yang, A., Ha, S., Ahn, J., Kim, R., Kim, S., Lee, Y., Kim, J., Söll, D.,
Lee, H.-Y., and Park, H.-S.: A chemical biology route to site-specific
authentic protein modifications, Science, 354, 623–626,
https://doi.org/10.1126/science.aah4428, 2016.