Auzinsh, M., Budker, D., and Rochester, S.: Optically Polarized Atoms: Understanding Light-Atom Interactions, Oxford University Press, Oxford, New York, ISBN 978-0-19-870502-4, 2014.
a,
b
Bain, A. D.: Modulation of NMR Spin Echoes in Coupled Systems, Chem. Phys. Lett., 57, 281–284, 1978.
a,
b
Bain, A. D.: A Superspin Analysis of Two-Dimensional FT NMR Experiments, J. Magn. Reson., 39, 335–342, 1980a.
a,
b
Bain, A. D.: Superspin in NMR: Application to the ABX System, J. Magn. Reson., 37, 209–216, 1980b.
a,
b
Bain, A. D.: Coherence Levels and Coherence Pathways in NMR. A Simple Way to Design Phase Cycling Procedures, J. Magn. Reson., 56, 418–427, 1984. a
Batchelder, L. S.: Deuterium NMR in Solids, in: eMagRes, Wiley, Chichester, UK, ISBN 978-0-470-03459-0, 2007. a
Bengtsson, I. and Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, Cambridge, ISBN 978-0-511-53504-8, 2006. a
Bornet, A., Ji, X., Mammoli, D., Vuichoud, B., Milani, J., Bodenhausen, G., and Jannin, S.: Long-Lived States of Magnetically Equivalent Spins Populated by Dissolution-DNP and Revealed by Enzymatic Reactions, Chem. Eur. J., 20, 17113–17118, 2014. a
Bowden, G. J. and Hutchison, W. D.: Tensor Operator Formalism for Multiple-Quantum NMR. 3. Spin-1 Nuclei with an Asymmetry Term in the Quadrupole Hamiltonian, J. Magn. Reson., 70, 361–367, 1986a.
a,
b
Bowden, G. J. and Hutchison, W. D.: Tensor Operator Formalism for Multiple-Quantum NMR. 1. Spin-1 Nuclei, J. Magn. Reson., 67, 403–414, 1986b.
a,
b
Bowden, G. J. and Hutchison, W. D.: Tensor Operator Formalism for Multiple-Quantum NMR. 4. Spin-32 Nuclei with an Asymmetry Term in the Quadrupole Hamiltonian, J. Magn. Reson., 72, 61–74, 1987. a
Bowden, G. J., Hutchison, W. D., and Khachan, J.: Tensor Operator Formalism for Multiple-Quantum NMR. 2. Spins 3 2, 2, and 5 2 and General I, J. Magn. Reson., 67, 415–437, 1986.
a,
b
Bowden, G. J., Martin, J. P. D., and Separovic, F.: Tensorial Sets for Coupled Pairs of Spin-1/2 Nuclei, Mol. Phys., 70, 581–603, 1990.
a,
b,
c
Budker, D., Gawlik, W., Kimball, D. F., Rochester, S. M., Yashchuk, V. V., and Weis, A.: Resonant Nonlinear Magneto-Optical Effects in Atoms, Rev. Mod. Phys., 74, 1153–1201, 2002. a
Carravetta, M., Johannessen, O. G., and Levitt, M. H.: Beyond the
T1 Limit: Singlet Nuclear Spin States in Low Magnetic Fields, Phys. Rev. Lett., 92, 153003,
https://doi.org/10.1103/PhysRevLett.92.153003, 2004.
a
Carravetta, M., Danquigny, A., Mamone, S., Cuda, F., Johannessen, O. G., Heinmaa, I., Panesar, K., Stern, R., Grossel, M. C., Horsewill, A. J., Samoson, A., Murata, M., Murata, Y., Komatsu, K., and Levitt, M. H.: Solid-State NMR of Endohedral Hydrogen-Fullerene Complexes, Phys. Chem. Chem. Phys., 9, 4879–4894, 2007. a
Cavadini, S., Dittmer, J., Antonijevic, S., and Bodenhausen, G.: Slow Diffusion by Singlet State NMR Spectroscopy, J. Am. Chem. Soc., 127, 15744–15748, 2005. a
Coxeter, H. S. M.: Regular Polytopes, Macmillan, New York, 2nd edn., ISBN 0-486-14158-6, 1963.
a,
b,
c
Dumez, J.-N., Håkansson, P., Mamone, S., Meier, B., Stevanato, G., Hill-Cousins, J. T., Roy, S. S., Brown, R. C. D., Pileio, G., and Levitt, M. H.: Theory of Long-Lived Nuclear Spin States in Methyl Groups and Quantum-Rotor Induced Polarisation, J. Chem. Phys., 142, 044506,
https://doi.org/10.1063/1.4906273, 2015.
a
Dumez, J.-N., Vuichoud, B., Mammoli, D., Bornet, A., Pinon, A. C., Stevanato, G., Meier, B., Bodenhausen, G., Jannin, S., and Levitt, M. H.: Dynamic Nuclear Polarization of Long-Lived Nuclear Spin States in Methyl Groups, J. Phys. Chem. Lett., 8, 3549–3555, 2017. a
Ernst, R. R., Bodenhausen, G., and Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, ISBN 978-0-19-855647-3, 1987.
a,
b,
c,
d,
e,
f,
g
Farkas, A.: Orthohydrogen, Parahydrogen and Heavy Hydrogen, Cambridge University Press, Cambridge, OCLC: 622966476, 1935. a
Garon, A., Zeier, R., and Glaser, S. J.: Visualizing Operators of Coupled Spin Systems, Phys. Rev. A, 91, 042122,
https://doi.org/10.1103/PhysRevA.91.042122, 2015.
a,
b,
c
Goyal, S. K., Simon, B. N., Singh, R., and Simon, S.: Geometry of the Generalized Bloch Sphere for Qutrits, J. Phys. A, 49, 165203,
https://doi.org/10.1088/1751-8113/49/16/165203, 2016.
a,
b,
c
Jannin, S., Bornet, A., Melzi, R., and Bodenhausen, G.: High Field Dynamic Nuclear Polarization at 6.7T: Carbon-13 Polarization above 70 % within 20 min, Chem. Phys. Lett., 549, 99–102, 2012. a
Jeener, J.: Superoperators in Magnetic Resonance, edited by: Waugh, J. S., Advances in Magnetic and Optical Resonance, 10, 1–51, 1982. a
Kastler, A.: Optical Methods of Atomic Orientation and of Magnetic Resonance, J. Opt. Soc. Am. (JOSA), 47, 460–465, 1957. a
Kimura, G. and Kossakowski, A.: The Bloch-Vector Space for N-Level Systems: The Spherical-Coordinate Point of View, Open Syst. Inf. Dyn., 12, 207–229, 2005.
a,
b
Kress, T., Walrant, A., Bodenhausen, G., and Kurzbach, D.: Long-Lived States in Hyperpolarized Deuterated Methyl Groups Reveal Weak Binding of Small Molecules to Proteins, J. Phys. Chem. Lett., 10, 1523–1529, 2019. a
Levitt, M. H.: Thermodynamics of Hartmann-Hahn Cross-Polarization, in: Pulsed Magnetic Resonance: NMR, ESR and Optics. A Recognition of E. L. Hahn, edited by: Bagguley, D. M. S., Oxford University Press, Oxford, OCLC: 1176441427, 1992a.
a,
b
Levitt, M. H.: Unitary Evolution, Liouville Space and Local Spin Thermodynamics, J. Magn. Reson., 99, 1–17, 1992b.
a,
b
Levitt, M. H.: An Orientational Sampling Scheme for Magnetic Resonance Based on a Four-Dimensional Polytope, in: Future Directions of NMR, edited by Khetrapal, C. L., Kumar, A., and Ramanathan, K. V., Springer India, New Delhi, India, 231–237, ISBN 978-81-8489-588-9, 2010. a
Levitt, M. H.: Symmetry Constraints on Spin Dynamics: Application to Hyperpolarized NMR, J. Magn. Reson., 262, 91–99, 2016. a
Levitt, M. H.: Long Live the Singlet State!, J. Magn. Reson., 306, 69–74, 2019.
a,
b,
c
Mammoli, D., Vuichoud, B., Bornet, A., Milani, J., Dumez, J.-N., Jannin, S., and Bodenhausen, G.: Hyperpolarized Para-Ethanol, J. Phys. Chem. B, 119, 4048–4052, 2015. a
Mehring, M.: High Resolution NMR Spectroscopy in Solids, NMR Basic Principles and Progress, Springer-Verlag, Berlin Heidelberg, ISBN 978-3-642-96334-6, 1976. a
Meier, B., Dumez, J.-N., Stevanato, G., Hill-Cousins, J. T., Roy, S. S., Håkansson, P., Mamone, S., Brown, R. C. D., Pileio, G., and Levitt, M. H.: Long-Lived Nuclear Spin States in Methyl Groups and Quantum-Rotor-Induced Polarization, J. Am. Chem. Soc., 135, 18746–18749, 2013. a
Navon, G., Song, Y.-Q., Rõõm, T., Appelt, S., Taylor, R. E., and Pines, A.: Enhancement of Solution NMR and MRI with Laser-Polarized Xenon, Science, 271, 1848–1851, 1996. a
Philp, D. J. and Kuchel, P. W.: A Way of Visualizing NMR Experiments on Quadrupolar Nuclei, Concept. Magnetic Res. Part A, 25A, 40–52, 2005.
a,
b
Pileio, G. and Levitt, M. H.: Isotropic Filtering Using Polyhedral Phase Cycles: Application to Singlet State NMR, J. Magn. Reson., 191, 148–155, 2008. a
Redfield, A. G.: The Theory of Relaxation Processes, in: Advances in Magnetic and Optical Resonance, edited by: Waugh, J. S., Academic Press, Advances in Magnetic Resonance, 1, 1–32, ISBN 978-1-4832-3114-3, 1965.
a,
b
Rodin, B. A., Bengs, C., Kiryutin, A. S., Sheberstov, K. F., Brown, L. J., Brown, R. C. D., Yurkovskaya, A. V., Ivanov, K. L., and Levitt, M. H.: Algorithmic Cooling of Nuclear Spins Using Long-Lived Singlet Order, J. Chem. Phys., 152, 164201,
https://doi.org/10.1063/5.0006742, 2020.
a,
b
Sanctuary, B. C.: Multipole Operators for an Arbitrary Number of Spins, J. Chem. Phys., 64, 4352–4361, 1976.
a,
b,
c
Sanctuary, B. C.: Magnetic Multipoles in Time Dependent Fields, J. Chem. Phys., 73, 1048–1053, 1980.
a,
b,
c
Sanctuary, B. C. and Temme, F. P.: Multipole N.M.R.: XIII. Multispin Interactions and Symmetry in Liouville Space, Mol. Phys., 55, 1049–1062, 1985a.
a,
b,
c
Sanctuary, B. C. and Temme, F. P.: Multipole N.M.R., Molecular Physics, 55, 1049–1062, 1985b.
a,
b,
c
Sarkar, R., Ahuja, P., Moskau, D., Vasos, P. R., and Bodenhausen, G.: Extending the Scope of Singlet-State Spectroscopy, ChemPhysChem, 8, 2652–2656, 2007a. a
Sørensen, O. W.: A Universal Bound on Spin Dynamics, J. Magn. Reson., 86, 435–440, 1990. a
Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., and Ernst, R. R.: Product Operator Formalism for the Description of NMR Pulse Experiments, Prog. Nucl. Mag. Res. Sp., 16, 163–192, 1984.
a,
b
Spiess, H. W.: Rotation of Molecules and Nuclear Spin Relaxation, in: Dynamic NMR Spectroscopy, edited by: Steigel, A. and Spiess, H. W.,
Springer Berlin Heidelberg, NMR Basic Principles and Progress/Grundlagen Und Fortschritte, 15, 55–214, 1978. a
Szymański, K., Weis, S., and Życzkowski, K.: Classification of Joint Numerical Ranges of Three Hermitian Matrices of Size Three, Linear Algebra Appl., 545, 148–173, 2018.
a,
b
Tayler, M. C. D., Marco-Rius, I., Kettunen, M. I., Brindle, K. M., Levitt, M. H., and Pileio, G.: Direct Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization, J. Am. Chem. Soc., 134, 7668–7671, 2012. a
van Beek, J. D., Carravetta, M., Antonioli, G. C., and Levitt, M. H.: Spherical Tensor Analysis of Nuclear Magnetic Resonance Signals, J. Chem. Phys., 122, 244510,
https://doi.org/10.1063/1.1943947, 2005.
a