Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-2-673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor
Silvio Künstner
Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Anh Chu
Institute of Smart Sensors, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Klaus-Peter Dinse
Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Alexander Schnegg
EPR4Energy, Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
Joseph E. McPeak
Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Boris Naydenov
CORRESPONDING AUTHOR
Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Jens Anders
Institute of Smart Sensors, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Center for Integrated Quantum Science and Technology (IQST), Stuttgart and Ulm, Germany
Klaus Lips
Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Related authors
No articles found.
Jan Lettens, Marina Avramenko, Ilias Vandevenne, Anh Chu, Philipp Hengel, Michal Kern, Jens Anders, Peter Moens, Etienne Goovaerts, and Sofie Cambré
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-11, https://doi.org/10.5194/mr-2024-11, 2024
Revised manuscript not accepted
Short summary
Short summary
Demonstration of an ultra-compact spectrometer for electrically-detected magnetic resonance on a chip (EDMRoC) of silicon carbide MOSFETs with comparable signal-to-noise ratio as state-of-the-art conventional resonator-based EDMR. The relatively low cost, high sensitivity and limited space requirements of the EDMRoC configuration holds promise for application in basic and applied research as well as in industrial environments.
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022, https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
Short summary
We have presented a CMOS-based NMR platform featuring arbitrary phase control and coherent detection in a non-zero intermediate frequency (IF) receiver architecture as well as active automatic temperature compensation. The proposed platform is centered around a custom-designed NMR-on-a-chip transceiver. The entire system achieves a phase stability well below 1° in consecutive pulse acquire experiments and keeps a normalized standard deviation in the measured T2 values of 0.45 % over 100 min.
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021, https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Short summary
Novel electron spin resonance (ESR) detectors based on voltage-controlled oscillators (VCOs) have been attracting attention, mainly due to the possibility of integrating the whole ESR spectrometer onto a single printed circuit board at relatively low cost while maintaining a performance comparable to commercial solutions. We present an experimental setup where the signal is detected as a change in VCO oscillation amplitude, along with in-depth theoretical analysis of the novel readout scheme.
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021, https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary
Short summary
The NMR-MOUSE is a magnetic resonance tool for non-destructive materials testing inside a laboratory. The history and use of this sensor are reviewed with attention to issues encountered when employed outside. Improvements are outlined to facilitate outdoor measurements.
Klaus-Peter Dinse, Tatsuhisa Kato, Shota Hasegawa, Yoshifumi Hashikawa, Yasujiro Murata, and Robert Bittl
Magn. Reson., 1, 197–207, https://doi.org/10.5194/mr-1-197-2020, https://doi.org/10.5194/mr-1-197-2020, 2020
Short summary
Short summary
The stable, two-atomic radical NO, which is an important biophysical messenger, was studied with magnetic resonance methods. Caused by its specific electronic configuration, it has sensor properties: its magnetic moment sensitively depends on its environment and restricted mobility therein. The interaction with solvents or solid phases can thus be quantified. Encapsulating the radical in the nearly spherical cage of modified C60 fullerenes is a perfect situation to study this effect.
Related subject area
Field: EPR | Topic: Instrumentation
Design and performance of an oversized-sample 35 GHz EPR resonator with an elevated Q value
On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors
Hyperfine spectroscopy in a quantum-limited spectrometer
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024, https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
Short summary
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic resonance (EPR) resonator based on a cylindrical cavity with 3 mm sample access. The design is robust; simple to manufacture and maintain; and, with its elevated Q value, well-suited to sensitive EPR experiments using continuous-wave or low-power pulsed excitation. Thus, we make multi-frequency EPR spectroscopy, a powerful approach to deconvolute overlapping paramagnetic species, more accessible.
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021, https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Short summary
Novel electron spin resonance (ESR) detectors based on voltage-controlled oscillators (VCOs) have been attracting attention, mainly due to the possibility of integrating the whole ESR spectrometer onto a single printed circuit board at relatively low cost while maintaining a performance comparable to commercial solutions. We present an experimental setup where the signal is detected as a change in VCO oscillation amplitude, along with in-depth theoretical analysis of the novel readout scheme.
Sebastian Probst, Gengli Zhang, Miloš Rančić, Vishal Ranjan, Marianne Le Dantec, Zhonghan Zhang, Bartolo Albanese, Andrin Doll, Ren Bao Liu, John Morton, Thierry Chanelière, Philippe Goldner, Denis Vion, Daniel Esteve, and Patrice Bertet
Magn. Reson., 1, 315–330, https://doi.org/10.5194/mr-1-315-2020, https://doi.org/10.5194/mr-1-315-2020, 2020
Short summary
Short summary
Electron spin detection was recently demonstrated using superconducting circuits and amplifiers at millikelvin temperatures, reaching the quantum limit of sensitivity. We use such a setup to measure electron-spin-echo envelope modulation on a small number of electron spins, in two model systems: bismuth donors in silicon and erbium ions doped in CaWO4 (calcium tungstate). Our results are a proof of principle that hyperfine spectroscopy is feasible with these quantum-limited ESR spectrometers.
Cited articles
Anders, J.: Fully-integrated CMOS Probes for Magnetic Resonance
Applications, École polytechnique fédérale de Lausanne,
Lausanne, Switzerland, https://doi.org/10.5075/EPFL-THESIS-5154, 2011.
Anders, J. and Lips, K.: MR to go, J. Magn. Reson., 306,
118–123, https://doi.org/10.1016/j.jmr.2019.07.007, 2019.
Anders, J., Angerhofer, A., and Boero, G.: K-band single-chip electron spin
resonance detector, J. Magn. Reson., 217, 19–26,
https://doi.org/10.1016/j.jmr.2012.02.003, 2012.
Azuma, N., Ozawa, T., and Yamauchi, J.: Molecular and Crystal Structures of
Complexes of Stable Free Radical BDPA with Benzene and Acetone, Bulletin of the Chemical Society of Japan, 67, 31–38, https://doi.org/10.1246/bcsj.67.31, 1994.
Brodsky, M. H. and Title, R. S.: Electron Spin Resonance in Amorphous
Silicon, Germanium, and Silicon Carbide, Phys. Rev. Lett., 23, 581–585,
https://doi.org/10.1103/PhysRevLett.23.581, 1969.
Chu, A., Schlecker, B., Handwerker, J., Künstner, S., Ortmanns, M.,
Lips, K., and Anders, J.: VCO-based ESR-on-a-chip as a tool for low-cost,
high-sensitivity food quality control, in: 2017 IEEE Biomedical Circuits and
Systems Conference (BioCAS), 19–21 October 2017 , Torino, Italy, 1–4,
https://doi.org/10.1109/BIOCAS.2017.8325172, 2017.
Chu, A., Schlecker, B., Lips, K., Ortmanns, M., and Anders, J.: An 8-channel
13 GHz ESR-on-a-Chip injection-locked VCO-array achieving 200 µM-concentration sensitivity, in: 2018 IEEE International Solid-State Circuits Conference (ISSCC), 11–15 February 2018, San Francisco, CA, USA, 354–356, https://doi.org/10.1109/ISSCC.2018.8310330, 2018.
Chu, A., Schlecker, B., Kern, M., Goodsell, J. L., Angerhofer, A., Lips, K., and Anders, J.: On the modeling of amplitude-sensitive ESR detection using VCO-based ESR-on-a-chip detectors, Magn. Reson. Discuss. [preprint], https://doi.org/10.5194/mr-2021-42, in review, 2021.
Eaton, G. R. and Eaton, S. S.: Rapid-Scan Electron Paramagnetic Resonance,
in: eMagRes, edited by: Harris, R. K. and Wasylishen, R., John Wiley &
Sons, Ltd, Chichester, UK, 1529–1542,
https://doi.org/10.1002/9780470034590.emrstm1522, 2016.
Eaton, G. R., Eaton, S. S., Barr, D. P., and Weber, R. T.: Quantitative EPR,
Springer Vienna, Vienna, Austria, https://doi.org/10.1007/978-3-211-92948-3,
2010.
Goldsborough, J. P., Mandel, M., and Pake, G. E.: Influence of Exchange
Interaction on Paramagnetic Relaxation Times, Phys. Rev. Lett., 4, 13–15,
https://doi.org/10.1103/PhysRevLett.4.13, 1960.
Gualco, G., Anders, J., Sienkiewicz, A., Alberti, S., Forró, L., and
Boero, G.: Cryogenic single-chip electron spin resonance detector, J. Magn. Reson., 247, 96–103,
https://doi.org/10.1016/j.jmr.2014.08.013, 2014.
Handwerker, J., Schlecker, B., Wachter, U., Radermacher, P., Ortmanns, M.,
and Anders, J.: A 14 GHz battery-operated point-of-care ESR spectrometer
based on a 0.13 µm CMOS ASIC, in: 2016 IEEE International Solid-State Circuits Conference (ISSCC), 31 January–4 February 2016, San Francisco, CA, USA, 476–477, https://doi.org/10.1109/ISSCC.2016.7418114, 2016.
Hyde, J. S., Strangeway, R. A., Camenisch, T. G., Ratke, J. J., and
Froncisz, W.: W-band frequency-swept EPR, J. Magn. Reson.,
205, 93–101, https://doi.org/10.1016/j.jmr.2010.04.005, 2010.
Joshi, J. P., Eaton, G. R., and Eaton, S. S.: Impact of resonator on
direct-detected rapid-scan EPR at 9.8 GHz, Appl. Magn. Reson., 28, 239–249,
https://doi.org/10.1007/BF03166759, 2005a.
Joshi, J. P., Ballard, J. R., Rinard, G. A., Quine, R. W., Eaton, S. S., and
Eaton, G. R.: Rapid-scan EPR with triangular scans and fourier deconvolution
to recover the slow-scan spectrum, J. Magn. Reson., 175,
44–51, https://doi.org/10.1016/j.jmr.2005.03.013, 2005b.
Kittell, A. W., Camenisch, T. G., Ratke, J. J., Sidabras, J. W., and Hyde,
J. S.: Detection of undistorted continuous wave (CW) electron paramagnetic
resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the
magnetic field, J. Magn. Reson., 211, 228–233,
https://doi.org/10.1016/j.jmr.2011.06.004, 2011.
Laguta, O., Tuček, M., van Slageren, J., and Neugebauer, P.:
Multi-frequency rapid-scan HFEPR, J. Magn. Reson., 296,
138–142, https://doi.org/10.1016/j.jmr.2018.09.005, 2018.
Matheoud, A. V., Sahin, N., and Boero, G.: A single chip electron spin
resonance detector based on a single high electron mobility transistor,
J. Magn. Reson., 294, 59–70,
https://doi.org/10.1016/j.jmr.2018.07.002, 2018.
Meyer, V., Eaton, S. S., and Eaton, G. R.: X-band Electron Spin Relaxation
Times for Four Aromatic Radicals in Fluid Solution and Comparison with Other
Organic Radicals, Appl. Magn. Reson., 45, 993–1007,
https://doi.org/10.1007/s00723-014-0579-6, 2014.
Mitchell, D. G., Quine, R. W., Tseitlin, M., Meyer, V., Eaton, S. S., and
Eaton, G. R.: Comparison of continuous wave, spin echo, and rapid scan EPR
of irradiated fused quartz, Radiat. Meas., 46, 993–996,
https://doi.org/10.1016/j.radmeas.2011.03.035, 2011a.
Mitchell, D. G., Quine, R. W., Tseitlin, M., Weber, R. T., Meyer, V., Avery,
A., Eaton, S. S., and Eaton, G. R.: Electron Spin Relaxation and
Heterogeneity of the 1 : 1 α,γ-Bisdiphenylene-β-phenylallyl (BDPA)/Benzene Complex, J. Phys. Chem. B, 115, 7986–7990,
https://doi.org/10.1021/jp201978w, 2011b.
Mitchell, D. G., Quine, R. W., Tseitlin, M., Eaton, S. S., and Eaton, G. R.:
X-band rapid-scan EPR of nitroxyl radicals, J. Magn. Reson.,
214, 221–226, https://doi.org/10.1016/j.jmr.2011.11.007, 2012.
Mitchell, D. G., Rosen, G. M., Tseitlin, M., Symmes, B., Eaton, S. S., and
Eaton, G. R.: Use of Rapid-Scan EPR to Improve Detection Sensitivity for
Spin-Trapped Radicals, Biophys. J., 105, 338–342,
https://doi.org/10.1016/j.bpj.2013.06.005, 2013a.
Mitchell, D. G., Tseitlin, M., Quine, R. W., Meyer, V., Newton, M. E.,
Schnegg, A., George, B., Eaton, S. S., and Eaton, G. R.: X-band rapid-scan
EPR of samples with long electron spin relaxation times: a comparison of
continuous wave, pulse and rapid-scan EPR, Mol. Phys., 111,
2664–2673, https://doi.org/10.1080/00268976.2013.792959, 2013b.
Möser, J., Lips, K., Tseytlin, M., Eaton, G. R., Eaton, S. S., and
Schnegg, A.: Using rapid-scan EPR to improve the detection limit of
quantitative EPR by more than one order of magnitude, J. Magn. Reson., 281, 17–25, https://doi.org/10.1016/j.jmr.2017.04.003, 2017.
Neese, F.: Quantum chemistry and EPR parameters, in: eMagRes, edited by:
Harris, R. K. and Wasylishen, R. L., John Wiley & Sons, Ltd, Chichester,
UK, 1–22, https://doi.org/10.1002/9780470034590.emrstm1505, 2017.
Pound, R. V. and Knight, W. D.: A Radiofrequency Spectrograph and Simple
Magnetic-Field Meter, Rev. Sci. Instrum., 21, 219–225,
https://doi.org/10.1063/1.1745537, 1950.
Powles, J. G.: The Adiabatic Fast Passage Experiment in Magnetic Resonance,
Proc. Phys. Soc., 71, 497–500, https://doi.org/10.1088/0370-1328/71/3/424,
1958.
Schlecker, B., Chu, A., Handwerker, J., Künstner, S., Ortmanns, M.,
Lips, K., and Anders, J.: Live demonstration: A VCO-based point-of-care ESR
spectrometer, in: 2017 IEEE SENSORS, 29 October–1 November 2017, Glasgow, UK, 1–1, https://doi.org/10.1109/ICSENS.2017.8234031, 2017a.
Schlecker, B., Chu, A., Handwerker, J., Künstner, S., Ortmanns, M.,
Lips, K., and Anders, J.: VCO-based ESR-on-a-chip as a tool for low-cost,
high-sensitivity point-of-care diagnostics, in: 2017 IEEE SENSORS, 29 October–1 November 2017, Glasgow, UK, 1–3, https://doi.org/10.1109/ICSENS.2017.8233896, 2017b.
Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for
spectral simulation and analysis in EPR, J. Magn. Reson., 178,
42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006.
Stoner, J. W., Szymanski, D., Eaton, S. S., Quine, R. W., Rinard, G. A., and
Eaton, G. R.: Direct-detected rapid-scan EPR at 250 MHz, 170, 127–135,
https://doi.org/10.1016/j.jmr.2004.06.008, 2004.
Switala, L. E., Black, B. E., Mercovich, C. A., Seshadri, A., and Hornak, J.
P.: An electron paramagnetic resonance mobile universal surface explorer,
J. Magn. Reson., 285, 18–25,
https://doi.org/10.1016/j.jmr.2017.10.004, 2017.
Tseitlin, M., Quine, R. W., Rinard, G. A., Eaton, S. S., and Eaton, G. R.:
Combining absorption and dispersion signals to improve signal-to-noise for
rapid-scan EPR imaging, J. Magn. Reson., 203, 305–310,
https://doi.org/10.1016/j.jmr.2010.01.013, 2010.
Tseitlin, M., Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R.:
Deconvolution of sinusoidal rapid EPR scans, J. Magn. Reson.,
208, 279–283, https://doi.org/10.1016/j.jmr.2010.11.015, 2011a.
Tseitlin, M., Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R.:
Rapid frequency scan EPR, J. Magn. Reson., 211, 156–161,
https://doi.org/10.1016/j.jmr.2011.05.006, 2011b.
Tseitlin, M., Eaton, G. R., and Eaton, S. S.: Computationally Efficient
Steady-State Solution of the Bloch Equations for Rapid Sinusoidal Scans
Based on Fourier Expansion in Harmonics of the Scan Frequency, Appl. Magn.
Reson., 44, 1373–1379, https://doi.org/10.1007/s00723-013-0494-2, 2013.
Tseytlin, M.: Full cycle rapid scan EPR deconvolution algorithm, J. Magn. Reson., 281, 272–278,
https://doi.org/10.1016/j.jmr.2017.06.008, 2017.
Van Doorslaer, S. and Vinck, E.: The strength of EPR and ENDOR techniques in
revealing structure–function relationships in metalloproteins, Phys. Chem.
Chem. Phys., 9, 4620–4638, https://doi.org/10.1039/B701568B, 2007.
Villamena, F. A.: Chapter 5 – EPR Spin Trapping, in: Reactive Species
Detection in Biology, edited by: Villamena, F. A., Elsevier, Boston, USA,
163–202, https://doi.org/10.1016/B978-0-12-420017-3.00004-9, 2017.
Weger, M.: Passage Effects in Paramagnetic Resonance Experiments, Bell
Syst. Tech. J., 39, 1013–1112,
https://doi.org/10.1002/j.1538-7305.1960.tb03951.x, 1960.
Welch, P.: The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms,
IEEE Trans. Audio Electroacoust., 15, 70–73,
https://doi.org/10.1109/TAU.1967.1161901, 1967.
Wolfson, H., Ahmad, R., Twig, Y., Blank, A., and Kuppusamy, P.: A hand-held
EPR scanner for transcutaneous oximetry, in: Medical Imaging 2015:
Biomedical Applications in Molecular, Structural, and Functional Imaging, 19 March 2015, Orlando, Florida, USA, 941706, https://doi.org/10.1117/12.2083864, 2015.
Yalçin, T. and Boero, G.: Single-chip detector for electron spin
resonance spectroscopy, Rev. Sci. Instrum., 79, 094105,
https://doi.org/10.1063/1.2969657, 2008.
Yang, X. and Babakhani, A.: A single-chip electron paramagnetic resonance
transceiver in 0.13-µm SiGe BiCMOS, IEEE T. Microw. Theory, 63, 3727–3735, https://doi.org/10.1109/tmtt.2015.2481895, 2015.
Yu, Z., Liu, T., Elajaili, H., Rinard, G. A., Eaton, S. S., and Eaton, G.
R.: Field-stepped direct detection electron paramagnetic resonance, J. Magn. Reson., 258, 58–64,
https://doi.org/10.1016/j.jmr.2015.06.011, 2015.
Zgadzai, O., Twig, Y., Wolfson, H., Ahmad, R., Kuppusamy, P., and Blank, A.:
Electron-Spin-Resonance Dipstick, Anal. Chem., 90, 7830–7836,
https://doi.org/10.1021/acs.analchem.8b00917, 2018.
Zhang, L. and Niknejad, A. M.: An Ultrasensitive 14-GHz 1.12-mW EPR
Spectrometer in 28-nm CMOS, IEEE Microw. Wireless Compon. Lett., 31, 819–822, https://doi.org/10.1109/LMWC.2021.3060730, 2021.
Short summary
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species. We present the application of an unconventional EPR detection method, rapid-scan EPR, to enhance the sensitivity on an improved design of a miniaturized EPR spectrometer implemented on a silicon microchip. Due to its size, it may be integrated into complex and harsh sample environments, enabling in situ or operando EPR measurements that have previously been inaccessible.
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and...