Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-673-2021
https://doi.org/10.5194/mr-2-673-2021
Research article
 | 
25 Aug 2021
Research article |  | 25 Aug 2021

Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor

Silvio Künstner, Anh Chu, Klaus-Peter Dinse, Alexander Schnegg, Joseph E. McPeak, Boris Naydenov, Jens Anders, and Klaus Lips

Related authors

Integration of electrically detected magnetic resonance on a chip (EDMRoC) with charge pumping for low-cost and sensitive defect characterization in SiC MOSFETs
Jan Lettens, Marina Avramenko, Ilias Vandevenne, Anh Chu, Philipp Hengel, Michal Kern, Jens Anders, Peter Moens, Etienne Goovaerts, and Sofie Cambré
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-11,https://doi.org/10.5194/mr-2024-11, 2024
Revised manuscript not accepted
Short summary
A portable NMR platform with arbitrary phase control and temperature compensation
Qing Yang, Jianyu Zhao, Frederik Dreyer, Daniel Krüger, and Jens Anders
Magn. Reson., 3, 77–90, https://doi.org/10.5194/mr-3-77-2022,https://doi.org/10.5194/mr-3-77-2022, 2022
Short summary
On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021,https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
When the MOUSE leaves the house
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021,https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary
EPR study of NO radicals encased in modified open C60 fullerenes
Klaus-Peter Dinse, Tatsuhisa Kato, Shota Hasegawa, Yoshifumi Hashikawa, Yasujiro Murata, and Robert Bittl
Magn. Reson., 1, 197–207, https://doi.org/10.5194/mr-1-197-2020,https://doi.org/10.5194/mr-1-197-2020, 2020
Short summary

Related subject area

Field: EPR | Topic: Instrumentation
Design and performance of an oversized-sample 35 GHz EPR resonator with an elevated Q value
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024,https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021,https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Hyperfine spectroscopy in a quantum-limited spectrometer
Sebastian Probst, Gengli Zhang, Miloš Rančić, Vishal Ranjan, Marianne Le Dantec, Zhonghan Zhang, Bartolo Albanese, Andrin Doll, Ren Bao Liu, John Morton, Thierry Chanelière, Philippe Goldner, Denis Vion, Daniel Esteve, and Patrice Bertet
Magn. Reson., 1, 315–330, https://doi.org/10.5194/mr-1-315-2020,https://doi.org/10.5194/mr-1-315-2020, 2020
Short summary

Cited articles

Anders, J.: Fully-integrated CMOS Probes for Magnetic Resonance Applications, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, https://doi.org/10.5075/EPFL-THESIS-5154, 2011. 
Anders, J. and Lips, K.: MR to go, J. Magn. Reson., 306, 118–123, https://doi.org/10.1016/j.jmr.2019.07.007, 2019. 
Anders, J., Angerhofer, A., and Boero, G.: K-band single-chip electron spin resonance detector, J. Magn. Reson., 217, 19–26, https://doi.org/10.1016/j.jmr.2012.02.003, 2012. 
Azuma, N., Ozawa, T., and Yamauchi, J.: Molecular and Crystal Structures of Complexes of Stable Free Radical BDPA with Benzene and Acetone, Bulletin of the Chemical Society of Japan, 67, 31–38, https://doi.org/10.1246/bcsj.67.31, 1994. 
Brodsky, M. H. and Title, R. S.: Electron Spin Resonance in Amorphous Silicon, Germanium, and Silicon Carbide, Phys. Rev. Lett., 23, 581–585, https://doi.org/10.1103/PhysRevLett.23.581, 1969. 
Download
Short summary
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species. We present the application of an unconventional EPR detection method, rapid-scan EPR, to enhance the sensitivity on an improved design of a miniaturized EPR spectrometer implemented on a silicon microchip. Due to its size, it may be integrated into complex and harsh sample environments, enabling in situ or operando EPR measurements that have previously been inaccessible.