Articles | Volume 3, issue 2
https://doi.org/10.5194/mr-3-161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reverse dynamic nuclear polarisation for indirect detection of nuclear spins close to unpaired electrons
Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Jan Henrik Ardenkjær-Larsen
Department of Health Technology, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
Gunnar Jeschke
Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Related authors
Gunnar Jeschke, Nino Wili, Yufei Wu, Sergei Kuzin, Hugo Karas, Henrik Hintz, and Adelheid Godt
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-17, https://doi.org/10.5194/mr-2024-17, 2024
Preprint under review for MR
Short summary
Short summary
Electron spins sense their environment via magnetic interactions. An important contribution stems from nuclear spins in their vicinity. They cause loss of coherence and thus reduce resolution of spectra obtained by experiments on electron spins and the efficiency of transferring electron-spin magentization to other nuclear spins. Here we study how protons in trityl radicals contribute to coherence loss. Such coherence loss is slower in the presence of a strong microwave field.
Marvin Lenjer, Nino Wili, Fabian Hecker, and Marina Bennati
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-16, https://doi.org/10.5194/mr-2024-16, 2024
Preprint under review for MR
Short summary
Short summary
Electron spin dynamics during microwave irradiation are of increasing interest in electron paramagnetic resonance (EPR) spectroscopy. Here, we show that these dynamics can be probed by modern pulse EPR experiments that use shaped microwave pulses. Combined with spin dynamics simulations, these results provide a starting point for optimizing existing EPR experiments and for developing new pulse sequences.
Julian Stropp, Nino Wili, Niels Christian Nielsen, and Daniel Klose
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-14, https://doi.org/10.5194/mr-2024-14, 2024
Revised manuscript under review for MR
Short summary
Short summary
Sensitivity is often the limiting factor in ENDOR. Here, we demonstrate how using chirp radiofrequency pulses can improve ENDOR sensitivity up to 3-9-fold, with the strongest increase for broader lines often encountered in disordered solids for nuclei such as nitrogen and metals. The resulting drastic speed-up in acquisition times renders also 2D ENDOR more feasible, as we demonstrate in 2D TRIPLE showing correlations of Cu hyperfine couplings.
Kathrin Aebischer, Nino Wili, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 1, 187–195, https://doi.org/10.5194/mr-1-187-2020, https://doi.org/10.5194/mr-1-187-2020, 2020
Short summary
Short summary
Resonant pulses in a spin-lock frame are used to select parts of the rf-field distribution in NMR experiments. Such pulses can be implemented in a straightforward way and arbitrarily shaped pulses can be used. We show an application of such pulses in homonuclear decoupling where restricting the amplitude distribution of the rf field leads to improved performance.
Nino Wili, Henrik Hintz, Agathe Vanas, Adelheid Godt, and Gunnar Jeschke
Magn. Reson., 1, 75–87, https://doi.org/10.5194/mr-1-75-2020, https://doi.org/10.5194/mr-1-75-2020, 2020
Short summary
Short summary
Measuring distances between unpaired electron spins is an important application of electron paramagnetic resonance. The longest distance that is accessible is limited by the phase memory time of the electron spins. Here we show that strong continuous microwave irradiation can significantly slow down relaxation. Additionally, we introduce a phase-modulation scheme that allows measurement of the distance during the irradiation. Our approach could thus significantly extend the accessible distances.
Gunnar Jeschke, Nino Wili, Yufei Wu, Sergei Kuzin, Hugo Karas, Henrik Hintz, and Adelheid Godt
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-17, https://doi.org/10.5194/mr-2024-17, 2024
Preprint under review for MR
Short summary
Short summary
Electron spins sense their environment via magnetic interactions. An important contribution stems from nuclear spins in their vicinity. They cause loss of coherence and thus reduce resolution of spectra obtained by experiments on electron spins and the efficiency of transferring electron-spin magentization to other nuclear spins. Here we study how protons in trityl radicals contribute to coherence loss. Such coherence loss is slower in the presence of a strong microwave field.
Marvin Lenjer, Nino Wili, Fabian Hecker, and Marina Bennati
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-16, https://doi.org/10.5194/mr-2024-16, 2024
Preprint under review for MR
Short summary
Short summary
Electron spin dynamics during microwave irradiation are of increasing interest in electron paramagnetic resonance (EPR) spectroscopy. Here, we show that these dynamics can be probed by modern pulse EPR experiments that use shaped microwave pulses. Combined with spin dynamics simulations, these results provide a starting point for optimizing existing EPR experiments and for developing new pulse sequences.
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024, https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
Short summary
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic resonance (EPR) resonator based on a cylindrical cavity with 3 mm sample access. The design is robust; simple to manufacture and maintain; and, with its elevated Q value, well-suited to sensitive EPR experiments using continuous-wave or low-power pulsed excitation. Thus, we make multi-frequency EPR spectroscopy, a powerful approach to deconvolute overlapping paramagnetic species, more accessible.
Julian Stropp, Nino Wili, Niels Christian Nielsen, and Daniel Klose
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-14, https://doi.org/10.5194/mr-2024-14, 2024
Revised manuscript under review for MR
Short summary
Short summary
Sensitivity is often the limiting factor in ENDOR. Here, we demonstrate how using chirp radiofrequency pulses can improve ENDOR sensitivity up to 3-9-fold, with the strongest increase for broader lines often encountered in disordered solids for nuclei such as nitrogen and metals. The resulting drastic speed-up in acquisition times renders also 2D ENDOR more feasible, as we demonstrate in 2D TRIPLE showing correlations of Cu hyperfine couplings.
Agathe Vanas, Janne Soetbeer, Frauke Diana Breitgoff, Henrik Hintz, Muhammad Sajid, Yevhen Polyhach, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov, and Daniel Klose
Magn. Reson., 4, 1–18, https://doi.org/10.5194/mr-4-1-2023, https://doi.org/10.5194/mr-4-1-2023, 2023
Short summary
Short summary
Nanometre distance measurements between spin labels by pulse EPR techniques yield structural information on the molecular level. Here, backed by experimental data, we derive a description for the total signal of the single-frequency technique for refocusing dipolar couplings (SIFTER), showing how the different spin–spin interactions give rise to dipolar signal and background – the latter has thus far been unknown.
Luis Fábregas Ibáñez, Gunnar Jeschke, and Stefan Stoll
Magn. Reson., 1, 209–224, https://doi.org/10.5194/mr-1-209-2020, https://doi.org/10.5194/mr-1-209-2020, 2020
Short summary
Short summary
Dipolar electron paramagnetic resonance spectroscopy methods such as DEER provide data on how proteins change shape, thus giving detailed insight into how proteins work. We present DeerLab, a comprehensive open-source software for reliably analyzing the associated data. The software implements a series of theoretical and algorithmic innovations and thereby improves the quality and reproducibility of data analysis.
Kathrin Aebischer, Nino Wili, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 1, 187–195, https://doi.org/10.5194/mr-1-187-2020, https://doi.org/10.5194/mr-1-187-2020, 2020
Short summary
Short summary
Resonant pulses in a spin-lock frame are used to select parts of the rf-field distribution in NMR experiments. Such pulses can be implemented in a straightforward way and arbitrarily shaped pulses can be used. We show an application of such pulses in homonuclear decoupling where restricting the amplitude distribution of the rf field leads to improved performance.
Nino Wili, Henrik Hintz, Agathe Vanas, Adelheid Godt, and Gunnar Jeschke
Magn. Reson., 1, 75–87, https://doi.org/10.5194/mr-1-75-2020, https://doi.org/10.5194/mr-1-75-2020, 2020
Short summary
Short summary
Measuring distances between unpaired electron spins is an important application of electron paramagnetic resonance. The longest distance that is accessible is limited by the phase memory time of the electron spins. Here we show that strong continuous microwave irradiation can significantly slow down relaxation. Additionally, we introduce a phase-modulation scheme that allows measurement of the distance during the irradiation. Our approach could thus significantly extend the accessible distances.
Related subject area
Field: Hyperpolarization | Topic: Pulse-sequence development
Determination of hydrogen exchange and relaxation parameters in PHIP complexes at micromolar concentrations
Dipolar order mediated 1H → 13C cross-polarization for dissolution-dynamic nuclear polarization
Lisanne Sellies, Ruud L. E. G. Aspers, and Marco Tessari
Magn. Reson., 2, 331–340, https://doi.org/10.5194/mr-2-331-2021, https://doi.org/10.5194/mr-2-331-2021, 2021
Short summary
Short summary
Reversible para-hydrogen-induced polarization (PHIP) is a technique to enhance NMR signals in solution, based on the association/dissociation of para-hydrogen and substrate molecules with/from an iridium catalyst. In this work we present an approach to measure NMR relaxation as well as rate constants of para-hydrogen association/dissociation with/from the iridium catalyst. These rates are important for understanding the different PHIP efficiencies observed for different substrate molecules.
Stuart J. Elliott, Samuel F. Cousin, Quentin Chappuis, Olivier Cala, Morgan Ceillier, Aurélien Bornet, and Sami Jannin
Magn. Reson., 1, 89–96, https://doi.org/10.5194/mr-1-89-2020, https://doi.org/10.5194/mr-1-89-2020, 2020
Short summary
Short summary
A dipolar cross-polarization (dCP) sequence employing simple radiofrequency pulse shapes with reduced power requirements is demonstrated to transfer proton polarization to insensitive heteronuclei.
Cited articles
Bornet, A., Milani, J., Vuichoud, B., Perez Linde, A. J., Bodenhausen, G., and Jannin, S.: Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization, Chem. Phys. Lett., 602, 63–67, https://doi.org/10.1016/j.cplett.2014.04.013, 2014. a
Can, T. V., Walish, J. J., Swager, T. M., and Griffin, R. G.: Time domain DNP with the NOVEL sequence, J. Chem. Phys., 143, 054201, https://doi.org/10.1063/1.4927087, 2015. a
Can, T. V., Weber, R. T., Walish, J. J., Swager, T. M., and Griffin, R. G.: Ramped-amplitude NOVEL, J. Chem. Phys., 146, 154204, https://doi.org/10.1063/1.4980155, 2017. a
Chen, H., Maryasov, A. G., Rogozhnikova, O. Y., Trukhin, D. V., Tormyshev, V. M., and Bowman, M. K.: Electron spin dynamics and spin–lattice relaxation of trityl radicals in frozen solutions, Phys. Chem. Chem. Phys., 18, 24954–24965, https://doi.org/10.1039/C6CP02649D, 2016. a
Doll, A. and Jeschke, G.: Wideband frequency-swept excitation in pulsed EPR spectroscopy, J. Magn. Reson., 280, 46–62, https://doi.org/10.1016/j.jmr.2017.01.004, 2017. a, b
Ernst, R. R., Bodenhausen, G., and Wokaun, A.: Principles of nuclear magnetic resonance in one and two dimensions, Clarendon Press, Oxford, ISBN 0-19-855629-2, 1987. a
Gao, C., Alaniva, N., Saliba, E. P., Sesti, E. L., Judge, P. T., Scott, F. J., Halbritter, T., Sigurdsson, S. T., and Barnes, A. B.: Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron, J. Magn. Reson., 308, 106586,
https://doi.org/10.1016/j.jmr.2019.106586, 2019. a
Harmer, J. R.: Hyperfine Spectroscopy – ENDOR, eMagRes, 5, 1493–1514,
https://doi.org/10.1002/9780470034590.emrstm1515, 2016. a
Hediger, S., Meier, B., Kurur, N. D., Bodenhausen, G., and Ernst, R.: NMR cross polarization by adiabatic passage through the Hartmann–Hahn condition
(APHH), Chem. Phys. Lett., 223, 283–288,
https://doi.org/10.1016/0009-2614(94)00470-6, 1994. a
Henstra, A. and Wenckebach, W. T.: The theory of nuclear orientation via
electron spin locking (NOVEL), Mol. Phys., 106, 859–871,
https://doi.org/10.1080/00268970801998262, 2008. a
Henstra, A., Dirksen, P., Schmidt, J., and Wenckebach, W. T.: Nuclear spin orientation via electron spin locking (NOVEL), J. Magn. Reson., 77, 389–393, https://doi.org/10.1016/0022-2364(88)90190-4, 1988. a, b
Hovav, Y., Feintuch, A., Vega, S., and Goldfarb, D.: Dynamic nuclear polarization using frequency modulation at 3.34 T, Jm Magnm Resonm, 238, 94–105, https://doi.org/10.1016/j.jmr.2013.10.025, 2014. a
Jain, S. K., Mathies, G., and Griffin, R. G.: Off-resonance NOVEL, J. Chem. Phys., 147, 164201, https://doi.org/10.1063/1.5000528, 2017. a
Jain, S. K., Yu, C. J., Wilson, C. B., Tabassum, T., Freedman, D. E., and Han, S.: Dynamic Nuclear Polarization with Vanadium(IV) Metal Centers, Chem., 7, 421–435, https://doi.org/10.1016/j.chempr.2020.10.021, 2021. a
Jeschke, G. and Schweiger, A.: Hyperfine decoupling in electron spin
resonance, J. Chem. Phys., 106, 9979–9991, https://doi.org/10.1063/1.474073, 1997. a
Kaminker, I. and Han, S.: Amplification of Dynamic Nuclear Polarization at 200 GHz by Arbitrary Pulse Shaping of the Electron Spin Saturation Profile, J. Phys. Chem. Lett., 9, 3110–3115, https://doi.org/10.1021/acs.jpclett.8b01413, 2018. a
Khutsishvili, G.: Spin Diffusion, Magnetic Relaxation, and Dynamic Polarization of Nuclei, Soviet Phys.-JETP, 16, 1540–1543, 1963. a
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M., and Corzilius, B.:
Dynamic nuclear polarization for sensitivity enhancement in modern
solid-state NMR, Prog. Nucl. Magn. Reson. Spectrosc., 102–103, 120–195,
https://doi.org/10.1016/j.pnmrs.2017.06.002, 2017. a
Mathies, G., Jain, S., Reese, M., and Griffin, R. G.: Pulsed Dynamic Nuclear
Polarization with Trityl Radicals, J. Phys. Chem. Lett., 7, 111–116,
https://doi.org/10.1021/acs.jpclett.5b02720, 2016. a, b
Ni, Q. Z., Daviso, E., Can, T. V., Markhasin, E., Jawla, S. K., Swager, T. M., Temkin, R. J., Herzfeld, J., and Griffin, R. G.: High Frequency Dynamic Nuclear Polarization, Accounts Chem. Res., 46, 1933–1941,
https://doi.org/10.1021/ar300348n, 2013. a
Ponti, A. and Schweiger, A.: Echo phenomena in electron paramagnetic resonance spectroscopy, Appl. Magn. Reson., 7, 363–403,
https://doi.org/10.1007/bf03162620, 1994. a
Redrouthu, V. S. and Mathies, G.: Efficient Pulsed Dynamic Nuclear Polarization with the X-Inverse-X Sequence, J. Am. Chem. Soc., 144, 1513–1516, https://doi.org/10.1021/jacs.1c09900, 2022. a, b
Rist, G. H. and Hyde, J. S.: Ligand ENDOR of Metal Complexes in Powders, J. Chem. Phys., 52, 4633–4643, https://doi.org/10.1063/1.1673696, 1970. a
Rizzato, R., Kaminker, I., Vega, S., and Bennati, M.: Cross-polarisation edited ENDOR, Mol. Phys., 111, 2809–2823, https://doi.org/10.1080/00268976.2013.816795, 2013. a, b
Shimon, D. and Kaminker, I.: Electron Spin Effects in Static DNP with Broadband Excitation, eMagRes, 9, 309–332, 2020. a
Stern, Q., Cousin, S. F., Mentink-Vigier, F., Pinon, A. C., Elliott, S. J.,
Cala, O., and Jannin, S.: Direct observation of hyperpolarization breaking
through the spin diffusion barrier, Sci. Adv., 7, 1–14,
https://doi.org/10.1126/sciadv.abf5735, 2021. a, b
Tan, K. O., Jawla, S., Temkin, R. J., and Griffin, R. G.: Pulsed dynamic nuclear polarization, eMagRes, 8, 339–352, 2019a. a
Tan, K. O., Mardini, M., Yang, C., Ardenkjær-Larsen, J. H., and Griffin, R. G.: Three-spin solid effect and the spin diffusion barrier in amorphous solids, Sci. Adv., 5, eaax2743, https://doi.org/10.1126/sciadv.aax2743, 2019b. a
Tan, K. O., Yang, C., Weber, R. T., Mathies, G., and Griffin, R. G.: Time-optimized pulsed dynamic nuclear polarization, Sci. Adv., 5, eaav6909,
https://doi.org/10.1126/sciadv.aav6909, 2019c. a, b
Tan, K. O., Weber, R. T., Can, T. V., and Griffin, R. G.: Adiabatic Solid Effect, J. Phys. Chem. Lett., 11, 3416–3421, https://doi.org/10.1021/acs.jpclett.0c00654, 2020. a
Tschaggelar, R., Breitgoff, F. D., Oberhänsli, O., Qi, M., Godt, A., and Jeschke, G.: High-Bandwidth Q-Band EPR Resonators, Appl. Magn. Reson., 48, 1273–1300, https://doi.org/10.1007/s00723-017-0956-z, 2017. a
van den Heuvel, D. J., Henstra, A., Lin, T. S., Schmidt, J., and Wenckebach, W. T.: Transient oscillations in pulsed dynamic nuclear polarization, Chem.
Phys. Lett., 188, 194–200, https://doi.org/10.1016/0009-2614(92)90008-B, 1992.
a
Weis, V. and Griffin, R.: Electron-nuclear cross polarization, Solid State Nucl. Mag., 29, 66–78, https://doi.org/10.1016/j.ssnmr.2005.08.005, 2006. a
Wili, N.: Raw Data and Evaluation Scripts for: “Reverse Dynamic Nuclear Polarisation for indirect detection of nuclear spins close to unpaired electrons”, Zenodo [data set], https://doi.org/10.5281/zenodo.6684677, 2022. a
Wili, N., Nielsen, A. B., Völker, L. A., Schreder, L., Nielsen, N. C., Jeschke, G., and Tan, K. O.: Designing broadband pulsed dynamic nuclear polarization sequences in static solids, Sci. Adv., 8, eabq0536, https://doi.org/10.1126/sciadv.abq0536, 2022. a
Wolfe, J. P.: Direct Observation of a Nuclear Spin Diffusion Barrier, Phys. Rev. Lett., 31, 907–910, https://doi.org/10.1103/physrevlett.31.907, 1973. a, b
Short summary
Dynamic nuclear polarisation (DNP) transfers polarisation from electron to nuclear spins. This is usually combined with direct detection of the latter. Here, we show that it is possible to reverse the transfer at 1.2 T. This allows us to investigate the spin dynamics of nuclear spins close to electrons – something that is notoriously difficult with established methods. We expect reverse DNP to be useful in the study of spin diffusion or as a building block for more elaborate pulse sequences.
Dynamic nuclear polarisation (DNP) transfers polarisation from electron to nuclear spins. This...