Articles | Volume 5, issue 2
https://doi.org/10.5194/mr-5-143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-5-143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and performance of an oversized-sample 35 GHz EPR resonator with an elevated Q value
Jörg Wolfgang Anselm Fischer
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Julian Stropp
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
René Tschaggelar
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Oliver Oberhänsli
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Nicholas Alaniva
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Mariko Inoue
Department of Chemistry Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
Kazushi Mashima
Department of Chemistry Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
Alexander Benjamin Barnes
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Gunnar Jeschke
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Daniel Klose
CORRESPONDING AUTHOR
Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Related authors
No articles found.
Julian Stropp, Nino Wili, Niels Christian Nielsen, and Daniel Klose
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-14, https://doi.org/10.5194/mr-2024-14, 2024
Revised manuscript under review for MR
Short summary
Short summary
Sensitivity is often the limiting factor in ENDOR. Here, we demonstrate how using chirp radiofrequency pulses can improve ENDOR sensitivity up to 3-9-fold, with the strongest increase for broader lines often encountered in disordered solids for nuclei such as nitrogen and metals. The resulting drastic speed-up in acquisition times renders also 2D ENDOR more feasible, as we demonstrate in 2D TRIPLE showing correlations of Cu hyperfine couplings.
Lauren E. Price, Nicholas Alaniva, Marthe Millen, Till Epprecht, Michael Urban, Alexander Däpp, and Alexander B. Barnes
Magn. Reson., 4, 231–241, https://doi.org/10.5194/mr-4-231-2023, https://doi.org/10.5194/mr-4-231-2023, 2023
Short summary
Short summary
This paper describes the design and implementation of new technology for nuclear magnetic resonance, which is a technique used to understand the molecular structure and dynamics of many systems. The spherical sample container and its apparatus introduced in this paper are used to perform initial proof-of-principle experiments at cryogenic temperatures. Further development of this technology will facilitate more flexibility in magnetic resonance experiments.
Agathe Vanas, Janne Soetbeer, Frauke Diana Breitgoff, Henrik Hintz, Muhammad Sajid, Yevhen Polyhach, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov, and Daniel Klose
Magn. Reson., 4, 1–18, https://doi.org/10.5194/mr-4-1-2023, https://doi.org/10.5194/mr-4-1-2023, 2023
Short summary
Short summary
Nanometre distance measurements between spin labels by pulse EPR techniques yield structural information on the molecular level. Here, backed by experimental data, we derive a description for the total signal of the single-frequency technique for refocusing dipolar couplings (SIFTER), showing how the different spin–spin interactions give rise to dipolar signal and background – the latter has thus far been unknown.
Nino Wili, Jan Henrik Ardenkjær-Larsen, and Gunnar Jeschke
Magn. Reson., 3, 161–168, https://doi.org/10.5194/mr-3-161-2022, https://doi.org/10.5194/mr-3-161-2022, 2022
Short summary
Short summary
Dynamic nuclear polarisation (DNP) transfers polarisation from electron to nuclear spins. This is usually combined with direct detection of the latter. Here, we show that it is possible to reverse the transfer at 1.2 T. This allows us to investigate the spin dynamics of nuclear spins close to electrons – something that is notoriously difficult with established methods. We expect reverse DNP to be useful in the study of spin diffusion or as a building block for more elaborate pulse sequences.
Luis Fábregas Ibáñez, Gunnar Jeschke, and Stefan Stoll
Magn. Reson., 1, 209–224, https://doi.org/10.5194/mr-1-209-2020, https://doi.org/10.5194/mr-1-209-2020, 2020
Short summary
Short summary
Dipolar electron paramagnetic resonance spectroscopy methods such as DEER provide data on how proteins change shape, thus giving detailed insight into how proteins work. We present DeerLab, a comprehensive open-source software for reliably analyzing the associated data. The software implements a series of theoretical and algorithmic innovations and thereby improves the quality and reproducibility of data analysis.
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.
Nino Wili, Henrik Hintz, Agathe Vanas, Adelheid Godt, and Gunnar Jeschke
Magn. Reson., 1, 75–87, https://doi.org/10.5194/mr-1-75-2020, https://doi.org/10.5194/mr-1-75-2020, 2020
Short summary
Short summary
Measuring distances between unpaired electron spins is an important application of electron paramagnetic resonance. The longest distance that is accessible is limited by the phase memory time of the electron spins. Here we show that strong continuous microwave irradiation can significantly slow down relaxation. Additionally, we introduce a phase-modulation scheme that allows measurement of the distance during the irradiation. Our approach could thus significantly extend the accessible distances.
Related subject area
Field: EPR | Topic: Instrumentation
On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor
Hyperfine spectroscopy in a quantum-limited spectrometer
Anh Chu, Benedikt Schlecker, Michal Kern, Justin L. Goodsell, Alexander Angerhofer, Klaus Lips, and Jens Anders
Magn. Reson., 2, 699–713, https://doi.org/10.5194/mr-2-699-2021, https://doi.org/10.5194/mr-2-699-2021, 2021
Short summary
Short summary
Novel electron spin resonance (ESR) detectors based on voltage-controlled oscillators (VCOs) have been attracting attention, mainly due to the possibility of integrating the whole ESR spectrometer onto a single printed circuit board at relatively low cost while maintaining a performance comparable to commercial solutions. We present an experimental setup where the signal is detected as a change in VCO oscillation amplitude, along with in-depth theoretical analysis of the novel readout scheme.
Silvio Künstner, Anh Chu, Klaus-Peter Dinse, Alexander Schnegg, Joseph E. McPeak, Boris Naydenov, Jens Anders, and Klaus Lips
Magn. Reson., 2, 673–687, https://doi.org/10.5194/mr-2-673-2021, https://doi.org/10.5194/mr-2-673-2021, 2021
Short summary
Short summary
Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species. We present the application of an unconventional EPR detection method, rapid-scan EPR, to enhance the sensitivity on an improved design of a miniaturized EPR spectrometer implemented on a silicon microchip. Due to its size, it may be integrated into complex and harsh sample environments, enabling in situ or operando EPR measurements that have previously been inaccessible.
Sebastian Probst, Gengli Zhang, Miloš Rančić, Vishal Ranjan, Marianne Le Dantec, Zhonghan Zhang, Bartolo Albanese, Andrin Doll, Ren Bao Liu, John Morton, Thierry Chanelière, Philippe Goldner, Denis Vion, Daniel Esteve, and Patrice Bertet
Magn. Reson., 1, 315–330, https://doi.org/10.5194/mr-1-315-2020, https://doi.org/10.5194/mr-1-315-2020, 2020
Short summary
Short summary
Electron spin detection was recently demonstrated using superconducting circuits and amplifiers at millikelvin temperatures, reaching the quantum limit of sensitivity. We use such a setup to measure electron-spin-echo envelope modulation on a small number of electron spins, in two model systems: bismuth donors in silicon and erbium ions doped in CaWO4 (calcium tungstate). Our results are a proof of principle that hyperfine spectroscopy is feasible with these quantum-limited ESR spectrometers.
Cited articles
Almeida Murphy, T., Pawlik, T., Weidinger, A., Höhne, M., Alcala, R., and Spaeth, J.-M.: Observation of Atomlike Nitrogen-Implanted Solid C60, Phys. Rev. Lett., 77, 1075–1078, https://doi.org/10.1103/PhysRevLett.77.1075, 1996. a
Bonke, S. A., Risse, T., Schnegg, A., and Brückner, A.: In situ electron paramagnetic resonance spectroscopy for catalysis, Nature Reviews Methods Primers, 1, 33, https://doi.org/10.1038/s43586-021-00031-4, 2021. a
Denysenkov, V., van Os, P., and Prisner, T. F.: Q-Band Loop-Gap Resonator for EPR Applications with Broadband-Shaped Pulses, Appl. Magn. Reson., 48, 1263–1272, https://doi.org/10.1007/s00723-017-0930-9, 2017. a
Eaton, G. R., Eaton, S. S., Barr, D. P., and Weber, R. T.: Quantitative EPR, Springer Vienna, ISBN 9783211929483, https://doi.org/10.1007/978-3-211-92948-3, 2010. a, b
Eckardt, M., Wieczorek, R., and Harneit, W.: Stability of C60 and N@C60 under thermal and optical exposure, Carbon, 95, 601–607, https://doi.org/10.1016/j.carbon.2015.08.073, 2015. a
Fischer, J. W. A., Stropp, J., Tschaggelar, R., Oberhänsli, O., Alaniva, N., Inoue, M., Mashima, K., Barnes, A. B., Jeschke, G., and Klose, D.: Design 3D CAD data of an oversized-sample 35 GHz EPR resonator with an elevated Q value, Zenodo [data set], https://doi.org/10.5281/zenodo.11082486, 2024. a
Forrer, J., García-Rubio, I., Schuhmam, R., Tschaggelar, R., and Harmer, J.: Cryogenic Q-band (35GHz) probehead featuring large excitation microwave fields for pulse and continuous wave electron paramagnetic resonance spectroscopy: Performance and applications, J. Magn. Reson., 190, 280–291, https://doi.org/10.1016/j.jmr.2007.11.009, 2008. a, b
Franco, L., Ceola, S., Corvaja, C., Bolzonella, S., Harneit, W., and Maggini, M.: Synthesis and magnetic properties of N@C60 derivatives, Chem. Phys. Lett., 422, 100–105, https://doi.org/10.1016/j.cplett.2006.02.046, 2006. a
Froncisz, W. and Hyde, J. S.: The loop-gap resonator: a new microwave lumped circuit ESR sample structure, J. Magn. Reson., 47, 515–521, https://doi.org/10.1016/0022-2364(82)90221-9, 1982. a
Gromov, I., Shane, J., Forrer, J., Rakhmatoullin, R., Rozentzwaig, Y., and Schweiger, A.: A Q-Band Pulse EPR/ENDOR Spectrometer and the Implementation of Advanced One- and Two-Dimensional Pulse EPR Methodology, J. Magn. Reson., 149, 196–203, https://doi.org/10.1006/jmre.2001.2298, 2001. a
Gromov, I., Forrer, J., and Schweiger, A.: Probehead operating at 35GHz for continuous wave and pulse electron paramagnetic resonance applications, Rev. Sci. Instrum., 77, 064704, https://doi.org/10.1063/1.2216849, 2006. a, b
Himmler, A., Albannay, M. M., von Witte, G., Kozerke, S., and Ernst, M.: Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles, Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022, 2022. a
Jakes, P., Dinse, K.-P., Meyer, C., Harneit, W., and Weidinger, A.: Purification and optical spectroscopy of N@C60, Phys. Chem. Chem. Phys., 5, 4080, https://doi.org/10.1039/b308284a, 2003. a
Judd, M., Jolley, G., Suter, D., Cox, N., and Savitsky, A.: Dielectric Coupler for General Purpose Q-Band EPR Cavity, Appl. Magn. Reson., 53, 963–977, https://doi.org/10.1007/s00723-021-01404-4, 2022. a, b, c
Matzler, C. and Wegmuller, U.: Dielectric properties of freshwater ice at microwave frequencies, J. Phys. D Appl. Phys., 20, 1623, https://doi.org/10.1088/0022-3727/20/12/013, 1987. a
Mett, R. R. and Hyde, J. S.: Microwave leakage from field modulation slots in TE011 electron paramagnetic resonance cavities, Rev. Sci. Instrum., 76, 014702, https://doi.org/10.1063/1.1823748, 2004. a
Mett, R. R., Sidabras, J. W., and Hyde, J. S.: Coupling of waveguide and resonator by inductive and capacitive irises for EPR spectroscopy, Appl. Magn. Reson., 35, 285–318, https://doi.org/10.1007/s00723-008-0162-0, 2009. a
Misra, M.: Multifrequency Electron Paramagnetic Resonance: Theory and Applications, Wiley, ISBN 9783527633531, https://doi.org/10.1002/9783527633531, 2011. a, b, c
NejatyJahromy, Y., Roy, S. C., Glaum, R., and Schiemann, O.: Multi-Frequency and Single-Crystal EPR on V4+ in W-Doped β-Vanadyl(V) Phosphate: Hyperfine Coupling- and g-Tensor Values and Orientation, Appl. Magn. Reson., 52, 169–175, https://doi.org/10.1007/s00723-020-01303-0, 2021. a
Nesmelov, Y. E., Gopinath, A., and Thomas, D. D.: Aqueous sample in an EPR cavity: sensitivity considerations, J. Magn. Reson., 167, 138–146, https://doi.org/10.1016/j.jmr.2003.12.005, 2004. a
Polyhach, Y., Bordignon, E., Tschaggelar, R., Gandra, S., Godt, A., and Jeschke, G.: High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies, Phys. Chem. Chem. Phys., 14, 10762, https://doi.org/10.1039/c2cp41520h, 2012. a
Raitsimring, A., Astashkin, A., Enemark, J. H., Blank, A., Twig, Y., Song, Y., and Meade, T. J.: Dielectric Resonator for Ka-Band Pulsed EPR Measurements at Cryogenic Temperatures: Probehead Construction and Applications, Appl. Magn. Reson., 42, 441–452, https://doi.org/10.1007/s00723-012-0313-1, 2012. a
Reijerse, E. and Savitsky, A.: Electron Paramagnetic Resonance Instrumentation, eMagRes, 6, 187–206, https://doi.org/10.1002/9780470034590.emrstm1511, 2017. a
Reijerse, E., Lendzian, F., Isaacson, R., and Lubitz, W.: A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation, J. Magn. Reson., 214, 237–243, https://doi.org/10.1016/j.jmr.2011.11.011, 2012. a, b, c, d
Roessler, M. M. and Salvadori, E.: Principles and applications of EPR spectroscopy in the chemical sciences, Chem. Soc. Rev., 47, 2534–2553, https://doi.org/10.1039/c6cs00565a, 2018. a
Savitsky, A., Grishin, Y., Rakhmatullin, R., Reijerse, E., and Lubitz, W.: An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities, Rev. Sci. Instrum., 84, 014704, https://doi.org/10.1063/1.4788735, 2013. a
Schweiger, A. and Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, ISBN 9780198506348, https://doi.org/10.1093/oso/9780198506348.001.0001, 2001. a
Sidabras, J. W., Richie, J. E., and Hyde, J. S.: Axially uniform magnetic field-modulation excitation for electron paramagnetic resonance in rectangular and cylindrical cavities by slot cutting, J. Magn. Reson., 274, 115–124, https://doi.org/10.1016/j.jmr.2016.11.014, 2017. a
Sienkiewicz, A., Smith, B. G., Veselov, A., and Scholes, C. P.: Tunable Q-band resonator for low temperature electron paramagnetic resonance/electron nuclear double resonance measurements, Rev. Sci. Instrum., 67, 2134–2138, https://doi.org/10.1063/1.1147027, 1996. a
Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson., 178, 42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006. a
Tschaggelar, R., Kasumaj, B., Santangelo, M. G., Forrer, J., Leger, P., Dube, H., Diederich, F., Harmer, J., Schuhmann, R., García-Rubio, I., and Jeschke, G.: Cryogenic 35GHz pulse ENDOR probehead accommodating large sample sizes: Performance and applications, J. Magn. Reson., 200, 81–87, https://doi.org/10.1016/j.jmr.2009.06.007, 2009. a, b, c, d, e, f, g
Tschaggelar, R., Breitgoff, F. D., Oberhänsli, O., Qi, M., Godt, A., and Jeschke, G.: High-Bandwidth Q-Band EPR Resonators, Appl. Magn. Reson., 48, 1273–1300, https://doi.org/10.1007/s00723-017-0956-z, 2017. a
Weidinger, A., Waiblinger, M., Pietzak, B., and Almeida Murphy, T.: Atomic nitrogen in C60:N@C60, Appl. Phys. A-Mater., 66, 287–292, https://doi.org/10.1007/s003390050668, 1998. a
Wittmann, J., Can, T., Eckardt, M., Harneit, W., Griffin, R., and Corzilius, B.: High-precision measurement of the electron spin g factor of trapped atomic nitrogen in the endohedral fullerene N@C60, J. Magn. Reson., 290, 12–17, https://doi.org/10.1016/j.jmr.2018.02.019, 2018. a
Zhang, Z., Fleissner, M. R., Tipikin, D. S., Liang, Z., Moscicki, J. K., Earle, K. A., Hubbell, W. L., and Freed, J. H.: Multifrequency Electron Spin Resonance Study of the Dynamics of Spin Labeled T4 Lysozyme, J. Phys. Chem. B, 114, 5503–5521, https://doi.org/10.1021/jp910606h, 2010. a
Short summary
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic resonance (EPR) resonator based on a cylindrical cavity with 3 mm sample access. The design is robust; simple to manufacture and maintain; and, with its elevated Q value, well-suited to sensitive EPR experiments using continuous-wave or low-power pulsed excitation. Thus, we make multi-frequency EPR spectroscopy, a powerful approach to deconvolute overlapping paramagnetic species, more accessible.
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic...