Articles | Volume 6, issue 1
https://doi.org/10.5194/mr-6-15-2025
https://doi.org/10.5194/mr-6-15-2025
Research article
 | 
22 Jan 2025
Research article |  | 22 Jan 2025

Electron-spin decoherence in trityl radicals in the absence and presence of microwave irradiation

Gunnar Jeschke, Nino Wili, Yufei Wu, Sergei Kuzin, Hugo Karas, Henrik Hintz, and Adelheid Godt

Related authors

ih-RIDME: a pulse EPR experiment to probe the heterogeneous nuclear environment
Sergei Kuzin, Victoriya N. Syryamina, Mian Qi, Moritz Fischer, Miriam Hülsmann, Adelheid Godt, Gunnar Jeschke, and Maxim Yulikov
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-19,https://doi.org/10.5194/mr-2024-19, 2024
Revised manuscript accepted for MR
Short summary

Related subject area

Field: EPR | Topic: Theory
The effect of the zero-field splitting in light-induced pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy
Andreas Scherer, Berk Yildirim, and Malte Drescher
Magn. Reson., 4, 27–46, https://doi.org/10.5194/mr-4-27-2023,https://doi.org/10.5194/mr-4-27-2023, 2023
Short summary
Intermolecular contributions, filtration effects and signal composition of SIFTER (single-frequency technique for refocusing)
Agathe Vanas, Janne Soetbeer, Frauke Diana Breitgoff, Henrik Hintz, Muhammad Sajid, Yevhen Polyhach, Adelheid Godt, Gunnar Jeschke, Maxim Yulikov, and Daniel Klose
Magn. Reson., 4, 1–18, https://doi.org/10.5194/mr-4-1-2023,https://doi.org/10.5194/mr-4-1-2023, 2023
Short summary
The effect of spin polarization on double electron–electron resonance (DEER) spectroscopy
Sarah R. Sweger, Vasyl P. Denysenkov, Lutz Maibaum, Thomas F. Prisner, and Stefan Stoll
Magn. Reson., 3, 101–110, https://doi.org/10.5194/mr-3-101-2022,https://doi.org/10.5194/mr-3-101-2022, 2022
Short summary

Cited articles

Apaydin, F. and Clough, S.: Nuclear magnetic resonance line shapes of methyl groups undergoing tunnelling rotation, J. Phys. C, 1, 932, https://doi.org/10.1088/0022-3719/1/4/313, 1968. a
Bahrenberg, T., Jahn, S. M., Feintuch, A., Stoll, S., and Goldfarb, D.: The decay of the refocused Hahn echo in double electron–electron resonance (DEER) experiments, Magnet. Reson., 2, 161–173, https://doi.org/10.5194/mr-2-161-2021, 2021. a, b, c
Borbat, P. P., Georgieva, E. R., and Freed, J. H.: Improved sensitivity for long-distance measurements in biomolecules: Five-pulse double electron-electron resonance, J. Phys. Chem. Lett., 4, 170–175, https://doi.org/10.1021/jz301788n, 2013. a
Bursch, M., Mewes, J.-M., Hansen, A., and Grimme, S.: Best‐practice DFT protocols for basic molecular computational chemistry, Angew. Chem. Int. Ed Engl., 61, e202205735, https://doi.org/10.26434/chemrxiv-2022-n304h, 2022. a
Canarie, E. R., Jahn, S. M., and Stoll, S.: Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals, J. Phys. Chem. Lett., 11, 3396–3400, https://doi.org/10.1021/acs.jpclett.0c00768, 2020. a, b, c
Download
Short summary
Electron spins sense their environment via magnetic interactions. An important contribution stems from nuclear spins in their vicinity. They cause loss of coherence and thus reduce resolution of spectra obtained by experiments on electron spins and the efficiency of transferring electron-spin magnetization to other nuclear spins. Here we study how protons in trityl radicals contribute to coherence loss. Such coherence loss is slower in the presence of a strong microwave field.