Articles | Volume 2, issue 1
https://doi.org/10.5194/mr-2-161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-2-161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The decay of the refocused Hahn echo in double electron–electron resonance (DEER) experiments
Thorsten Bahrenberg
Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
Samuel M. Jahn
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
Akiva Feintuch
Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
Daniella Goldfarb
CORRESPONDING AUTHOR
Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
Related authors
No articles found.
Elena Edinach, Xing Zhang, Chao-Yu Cui, Yin Yang, George Mitrikas, Alexey Bogdanov, Xun-Cheng Su, and Daniella Goldfarb
Magn. Reson., 6, 211–228, https://doi.org/10.5194/mr-6-211-2025, https://doi.org/10.5194/mr-6-211-2025, 2025
Short summary
Short summary
Protein structure and motion are key to its function. Using electron paramagnetic resonance (EPR) methods, it is possible to measure distances between magnetic markers like gadolinium ions grafted on proteins. Such measurements rely on the gadolinium phase memory time, determining how long the signal lasts. We studied how nearby atoms and environmental noise affect signal lifetimes using advanced EPR techniques. Our findings show how lifetimes can be extended to design better protein analysis.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Sarah R. Sweger, Vasyl P. Denysenkov, Lutz Maibaum, Thomas F. Prisner, and Stefan Stoll
Magn. Reson., 3, 101–110, https://doi.org/10.5194/mr-3-101-2022, https://doi.org/10.5194/mr-3-101-2022, 2022
Short summary
Short summary
This work examines the physics underlying double electron–electron resonance (DEER) spectroscopy, a magnetic-resonance method that provides nanoscale data about protein structure and conformations.
Cited articles
Bahrenberg, T., Yang, Y., Goldfarb, D., and Feintuch, A.: rDEER: A Modified
DEER Sequence for Distance Measurements Using Shaped Pulses,
Magnetochemistry, 5, 20, https://doi.org/10.3390/magnetochemistry5010020, 2019.
Bahrenberg, T., Jahn, S. M., Feintuch, A., Stoll, S., and Goldfarb, D.: The decay of the refocused Hahn echo in DEER experiments, Raw data, Zenodo, https://doi.org/10.5281/zenodo.4449018, 2021.
Borbat, P. P., Georgieva, E. R., and Freed, J. H.: Improved sensitivity for
long-distance measurements in biomolecules: Five-pulse double
electron-electron resonance, J. Phys. Chem. Lett., 4, 170–175,
https://doi.org/10.1021/jz301788n, 2013.
Breitgoff, F. D., Soetbeer, J., Doll, A., Jeschke, G., and Polyhach, Y. O.:
Artefact suppression in 5-pulse double electron electron resonance for
distance distribution measurements, Phys. Chem. Chem. Phys., 19,
15766–15779, https://doi.org/10.1039/c7cp01488k, 2017.
Brown, I.: Electron spin-echo studies of relaxation processes in molecular
solids, in: Time Domain Electron Spin Resonance, edited by: Kevan, L. and Schwartz, R. N., John Wiley & Sons, New York, 195–229, 1979.
Canarie, E. R., Jahn, S. M., and Stoll, S.: Quantitative Structure-Based
Prediction of Electron Spin Decoherence in Organic Radicals, J. Phys. Chem.
Lett., 11, 3396–3400, https://doi.org/10.1021/acs.jpclett.0c00768, 2020.
Carr, H. Y. and Purcell, E. M.: Effects of diffusion on free precession in
nuclear magnetic resonance experiments, Phys. Rev., 94, 630–638,
https://doi.org/10.1103/PhysRev.94.630, 1954.
Dastvan, R., Bode, B. E., Karuppiah, M. P. R., Marko, A., Lyubenova, S.,
Schwalbe, H., and Prisner, T. F.: Optimization of transversal relaxation of
nitroxides for pulsed electron-electron double resonance spectroscopy in
phospholipid membranes, J. Phys. Chem. B, 114, 13507–13516,
https://doi.org/10.1021/jp1060039, 2010.
Eaton, S. S. and Eaton, G. R.: Relaxation mechanisms, eMagRes, 5,
1543–1556, https://doi.org/10.1002/9780470034590.emrstm1507, 2016.
Eaton, S. S. and Eaton, G. R.: Relaxation times of organic radicals and
transition metal ions, in: Distance measurements in biological systems by
EPR, edited by: Berliner, L., Eaton, S. S., and Eaton, G. R., Springer, Boston, MA, 19, 29–154, https://doi.org/10.1007/0-306-47109-4_2, 2000.
El Mkami, H., Ward, R., Bowman, A., Owen-Hughes, T., and Norman, D. G.: The
spatial effect of protein deuteration on nitroxide spin-label relaxation:
Implications for EPR distance measurement, J. Magn. Reson., 248, 36–41,
https://doi.org/10.1016/J.JMR.2014.09.010, 2014.
Feintuch, A., Otting, G., and Goldfarb, D.: Gd3+ Spin Labeling for
Measuring Distances in Biomacromolecules: Why and How?, Methods Enzymol., 563, 415–457, https://doi.org/10.1016/bs.mie.2015.07.006, 2015.
Giannoulis, A., Yang, Y., Gong, Y., Tan, X., Feintuch, A., Carmieli, R.,
Bahrenberg, T., Liu, Y., Su, X., and Goldfarb, D.: DEER distance measurements
on trityl/trityl and Gd(iii)/trityl labelled proteins, Phys. Chem. Chem. Phys., 21, 10217–10227, https://doi.org/10.1039/c8cp07249c, 2019.
Goldfarb, D., Lipkin, Y., Potapov, A., Gorodetsky, Y., Epel, B.,
Raitsimring, A. M., Radoul, M., and Kaminker, I.: HYSCORE and DEER with an
upgraded 95 GHz pulse EPR spectrometer, J. Magn. Reson., 194, 8–15,
https://doi.org/10.1016/j.jmr.2008.05.019, 2008.
Harbridge, J. R., Eaton, S. S., and Eaton, G. R.: Comparison of electron spin
relaxation times measured by Carr–Purcell–Meiboom–Gill and two-pulse
spin-echo sequences, J. Magn. Reson., 164, 44–53,
https://doi.org/10.1016/S1090-7807(03)00182-4, 2003.
Huber, M., Lindgren, M., Hammarström, P., Mårtensson, L.-G.,
Carlsson, U., Eaton, G. R., and Eaton, S. S.: Phase memory relaxation times of spin labels in human carbonic anhydrase II: pulsed EPR to determine spin
label location, Biophys. Chem., 94, 245–256,
https://doi.org/10.1016/S0301-4622(01)00239-3, 2001.
Jeschke, G.: Interpretation of Dipolar EPR Data in Terms of Protein
Structure, in: Structural Information from Spin-Labels and Intrinsic
Paramagnetic Centres in the Biosciences, edited by: Timmel, C. R. and
Harmer, J. R., Springer, Berlin, Heidelberg, Germany, 83–120, 2013.
Jeschke, G. and Polyhach, Y.: Distance measurements on spin-labelled
biomacromolecules by pulsed electron paramagnetic resonance, Phys. Chem.
Chem. Phys., 9, 1895–1910, https://doi.org/10.1039/b614920k, 2007.
Kveder, M., Rakvin, B., and You, J.: A quantum many body model for the
embedded electron spin decoherence in organic solids, J. Chem. Phys.,
151, 164124, https://doi.org/10.1063/1.5124561, 2019.
Lenz, S., Bader, K., Bamberger, H., and Van Slageren, J.: Quantitative
prediction of nuclear-spin-diffusion-limited coherence times of molecular
quantum bits based on copper(ii), Chem. Commun., 53, 4477–4480,
https://doi.org/10.1039/c6cc07813c, 2017.
Ma, W. L., Wolfowicz, G., Zhao, N., Li, S. S., Morton, J. J. L., and Liu, R.
B.: Uncovering many-body correlations in nanoscale nuclear spin baths by
central spin decoherence, Nat. Commun., 5, 4822, https://doi.org/10.1038/ncomms5822,
2014.
Martin, R. E., Pannier, M., Diederich, F., Gramlich, V., Hubrich, M., and
Spiess, H. W.: Determination of End-to-End Distances in a Series of TEMPO
Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron
Electron Resonance Experiment, Angew. Chem. Int. Edit., 37,
2833–2837, 1998.
Mentink-Vigier, F., Collauto, A., Feintuch, A., Kaminker, I., Tarle, V., and
Goldfarb, D.: Increasing sensitivity of pulse EPR experiments using echo
train detection schemes, J. Magn. Reson., 236, 117–125,
https://doi.org/10.1016/j.jmr.2013.08.012, 2013.
Milov, A. D., Salikhov, K. M., and Tsvetkov, Y. D.: Spin diffusion and
kinetics of spin-lattice relaxation of H-atoms in glassy matrices at
77 K, Fiz. Tverd. Tela, 14, 2211–2215, 1972.
Milov, A. D., Tsvetkov, Y. D., and Salikhov, K. M.: Phase relaxation of
H-atoms stabilized in glassy matrices, Fiz. Tverd. Tela, 15, 1187–1195, 1973.
Milov, A. D., Salikhov, K. M., and Shirov, M. D.: Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids, Fiz. Tverd. Tela+, 23, 975–982, 1981.
Milov, A. D., Ponomarev, A. B., and Tsvetkov, Y. D.: Electron-electron double
resonance in electron spin echo: Model biradical systems and the sensitized
photolysis of decalin, Chem. Phys. Lett., 110, 67–72,
https://doi.org/10.1016/0009-2614(84)80148-7, 1984.
Mims, W. B.: Electron spin echoes, in: Electron Paramagnetic Resonance,
edited by: Geschwind, S., Plenum, New York, USA, 263–351, 1972.
Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W.: Dead-Time
Free Measurement of Dipole-Dipole Interactions between Electron Spins, J.
Magn. Reson., 142, 331–340, https://doi.org/10.1006/jmre.1999.1944, 2000.
Raitsimring, A. M., Salikhov, K. M., Umanski, U., and Tsvetkov, Y. D.: The
instantaneous diffusion of the ESE paramagnetic centers in solids, Fiz. Tverd. Tela+, 16, 756–763, 1974.
Raitsimring, A. M., Dalaloyan, A., Collauto, A., Feintuch, A., Meade, T., and
Goldfarb, D.: Zero field splitting fluctuations induced phase relaxation of
Gd3+ in frozen solutions at cryogenic temperatures, J. Magn. Reson., 248, 71–80, https://doi.org/10.1016/j.jmr.2014.09.012, 2014.
Reginsson, G. W., Kunjir, N. C., Sigurdsson, S. T., and Schiemann, O.: Trityl
radicals: Spin labels for nanometer-distance measurements, Chem.-Eur. J., 18, 13580–13584, https://doi.org/10.1002/chem.201203014, 2012.
Reslan, M. and Kayser, V.: The effect of deuterium oxide on the
conformational stability and aggregation of bovine serum albumin, Pharm.
Dev. Technol., 23, 1030–1036, https://doi.org/10.1080/10837450.2016.1268157, 2018.
Saikin, S. K., Yao, W., and Sham, L. J.: Single-electron spin decoherence by
nuclear spin bath: Linked-cluster expansion approach, Phys. Rev. B, 75, 125314, https://doi.org/10.1103/PhysRevB.75.125314, 2007.
Salikhov, K. M. and Tsvetkov, Y. D.: Electron spin-echo studies of spin-spin interactions in solids, in: Time Domain Electron Spin Resonance, edited by: Kevan, L. and Schwartz, R. N., Wiley, New York, USA, 279–341, 1979.
Schmidt, T., Wälti, M. A., Baber, J. L., Hustedt, E. J., and Clore, G.
M.: Long Distance Measurements up to 160 Å in the GroEL Tetradecamer
Using Q-Band DEER EPR Spectroscopy, Angew. Chem. Int. Edit., 55,
15905–15909, https://doi.org/10.1002/anie.201609617, 2016.
Schweiger, A. and Jeschke, G.: Principles of Pulse Electron Paramagnetic
Resonance, Oxford University Press, Oxford, UK, 2001.
Soetbeer, J., Hülsmann, M., Godt, A., Polyhach, Y., and Jeschke, G.:
Dynamical decoupling of nitroxides in: O-terphenyl: A study of temperature,
deuteration and concentration effects, Phys. Chem. Chem. Phys., 20,
1615–1628, https://doi.org/10.1039/c7cp07074h, 2018.
Soetbeer, J., Millen, M., Zouboulis, K., Hülsmann, M., Godt, A.,
Polyhach, Y., and Jeschke, G.: Dynamical decoupling in water-glycerol
glasses: a comparison of nitroxide, trityl and gadolinium radicals, Phys. Chem. Chem. Phys., 23, 5352–5369, https://doi.org/10.1039/d1cp00055a, 2021.
Spindler, P. E., Waclawska, I., Endeward, B., Plackmeyer, J., Ziegler, C.,
and Prisner, T. F.: Carr-Purcell Pulsed Electron Double Resonance with
Shaped Inversion Pulses, J. Phys. Chem. Lett., 6, 4331–4335,
https://doi.org/10.1021/acs.jpclett.5b01933, 2015.
Van Doorslaer, S.: Hyperfine spectroscopy: ESEEM, eMagRes, 6, 51–70,
https://doi.org/10.1002/9780470034590.emrstm1517, 2017.
Verheul, M., Roefs, S. P. F. M., and de Kruif, K. G.: Aggregation of
β-lactoglobulin and infuence of D2O, FEBS Lett., 421, 273–276, 1998.
Witzel, W. M. and Das Sarma, S.: Quantum theory for electron spin
decoherence induced by nuclear spin dynamics in semiconductor quantum
computer architectures: Spectral diffusion of localized electron spins in
the nuclear solid-state environment, Phys. Rev. B, 74, 035322, https://doi.org/10.1103/PhysRevB.74.035322, 2006.
Yang, W. and Liu, R. B.: Quantum many-body theory for qubit decoherence in a
finite-size spin bath, AIP Conf. Proc., 1074, 68–71,
https://doi.org/10.1063/1.3037140, 2008.
Yang, W. and Liu, R. B.: Quantum many-body theory of qubit decoherence in a
finite-size spin bath, II. Ensemble dynamics, Phys. Rev. B, 79, 115320, https://doi.org/10.1103/PhysRevB.79.115320, 2009.
Yang, Y., Pan, B. Bin, Tan, X., Yang, F., Liu, Y., Su, X. C., and Goldfarb,
D.: In-Cell Trityl-Trityl Distance Measurements on Proteins, J. Phys. Chem.
Lett., 11, 1141–1147, https://doi.org/10.1021/acs.jpclett.9b03208, 2020.
Yang, Z., Liu, Y., Borbat, P., Zweier, J. L., Freed, J. H., and Hubbell, W.
L.: Pulsed ESR dipolar spectroscopy for distance measurements in immobilized
spin labeled proteins in liquid solution, J. Am. Chem. Soc., 134,
9950–9952, https://doi.org/10.1021/ja303791p, 2012.
Yardeni, E. H., Bahrenberg, T., Stein, R. A., Mishra, S., Zomot, E., Graham,
B., Tuck, K. L., Huber, T., Bibi, E., Mchaourab, H. S., and Goldfarb, D.:
Probing the solution structure of the E. coli multidrug transporter MdfA
using DEER distance measurements with nitroxide and Gd(III) spin labels,
Sci. Rep.-UK, 9, 12528, https://doi.org/10.1038/s41598-019-48694-0, 2019.
Zecevic, A., Eaton, G. R., Eaton, S. S., and Lindgren, M.: Dephasing of electron spin echoes for nitroxyl radicals in glassy solvents by non-methyl and methyl protons, Mol. Phys., 95, 1255–1263, 1998.
Short summary
Double electron–electron resonance (DEER) provides information on the structure of proteins by attaching two spin labels to the protein at a well-defined location and measuring the distance between them. The sensitivity of the method in terms of the amount of the protein that is needed for the experiment depends strongly on the relaxation properties of the spin label and the composition of the solvent. We show how to set up the experiment for best sensitivity when the solvent is water (H2O).
Double electron–electron resonance (DEER) provides information on the structure of proteins by...