Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-619-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/mr-2-619-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Virtual decoupling to break the simplification versus resolution trade-off in nuclear magnetic resonance of complex metabolic mixtures
Cyril Charlier
CORRESPONDING AUTHOR
Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
Neil Cox
Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
Sophie Martine Prud'homme
Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO
(Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin
de la Housse, Reims, France
present address: Université de Lorraine, CNRS, LIEC, 57000, Metz, France
Alain Geffard
Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO
(Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin
de la Housse, Reims, France
Jean-Marc Nuzillard
Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
Burkhard Luy
Institute for Biological Interfaces 4 – Magnetic Resonance,
Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany
Guy Lippens
CORRESPONDING AUTHOR
Toulouse Biotechnology Institute (TBI), Université de Toulouse,
CNRS, INRAE, INSA, Toulouse, France
Related authors
No articles found.
Yannik T. Woordes and Burkhard Luy
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-13, https://doi.org/10.5194/mr-2025-13, 2025
Preprint under review for MR
Short summary
Short summary
Bilinear rotations like BIRD, TANGO, BANGO, and BIG-BIRD allow the rotation of an isolated spin without couplings, i.e. bilinear intereactions, in one way, while rotating spins with a matched coupling in another way. All four types of robust bilinear rotations with COB-compensation up to 750 Hz couplings are derived and applied in a HMBC/HSQC-COSY supersequence for isotropic samples and in a J-resolved type experiment using a partially aligned sample.
Mengjia He, Neil MacKinnon, Dominique Buyens, Burkhard Luy, and Jan G. Korvink
Magn. Reson., 6, 173–181, https://doi.org/10.5194/mr-6-173-2025, https://doi.org/10.5194/mr-6-173-2025, 2025
Short summary
Short summary
Parallel NMR (nuclear magnetic resonance) detection enhances measurement throughput for high-throughput screening. However, local gradients in parallel detectors cause field spillover in adjacent channels, leading to spin dephasing and signal loss. This study introduces a compensation scheme using optimized pulses to mitigate gradient-induced field inhomogeneity through coherence locking. The proposed approach offers an effective solution for NMR probes with parallel, independently switchable gradient coils.
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022, https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Short summary
In contrast to adiabatic excitation, recently introduced SORDOR-90 pulses provide effective transverse 90° rotations throughout their bandwidth, with a quadratic offset dependence of the phase in the x,y plane. Together with phase-matched SORDOR-180 pulses, this enables a direct implementation of the Böhlen–Bodenhausen approach for frequency-swept pulses for a type of 90°/180° pulse–delay sequence. Example pulse shapes are characterised, and an application is given with a 19F-PROJECT experiment.
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Cited articles
Andersson, P., Nordstrand, K., Sunnerhagen, M., Liepinsh, E., Turovskis, I.,
and Otting, G.: Heteronuclear correlation experiments for the determination of one-bond coupling constants, J. Biomol. NMR, 11, 445–450,
https://doi.org/10.1023/A:1008206212145, 1998.
Arnold, J. T., Dharmatti, S. S., and Packard, M. E.: Chemical Effects on
Nuclear Induction Signals from Organic Compounds, J. Chem. Phys., 19,
507–507, https://doi.org/10.1063/1.1748264, 1951.
Aue, W. P., Bartholdi, E., and Ernst, R. R.: Two-dimensional spectroscopy.
Application to nuclear magnetic resonance, J. Chem. Phys., 64, 2229–2246,
https://doi.org/10.1063/1.432450, 1976.
Bahadoor, A., Brinkmann, A., and Melanson, J. E.: 13C-Satellite Decoupling Strategies for Improving Accuracy in Quantitative Nuclear Magnetic
Resonance, Anal. Chem., 93, 851–858,
https://doi.org/10.1021/acs.analchem.0c03428, 2021.
Bendall, M. R., Pegg, D. T., and Doddrell, D. M.: Pulse sequences utilizing
the correlated motion of coupled heteronuclei in the transverse plane of the
doubly rotating frame, J. Magn. Reson., 52, 81–117,
https://doi.org/10.1016/0022-2364(83)90259-7, 1983.
Bernstein, H. J. and Schneider, W. G.: Nuclear Magnetic Resonance Spectra of
Pyridine and Some Deuterated and Methylated Pyridines, J. Chem. Phys., 24,
469–470, https://doi.org/10.1063/1.1742500, 1956.
Bloch, F., Hansen, W. W., and Packard, M.: Nuclear Induction, Phys. Rev.,
69, 127–127, https://doi.org/10.1103/PhysRev.69.127, 1946.
Bodenhausen, G. and Ruben, D. J.: Natural abundance nitrogen-15 NMR by
enhanced heteronuclear spectroscopy, Chem. Phys. Lett., 69, 185–189,
https://doi.org/10.1016/0009-2614(80)80041-8, 1980.
Bolton, P. H. and Bodenhausen, G.: Resolution enhancement in heteronuclear
two-dimensional spectroscopy by realignment of coherence transfer echoes, J. Magn. Reson., 46, 306–318, https://doi.org/10.1016/0022-2364(82)90146-9, 1982.
Boros, S. and Kövér, K. E.: Low-power composite CPMG HSQMBC
experiment for accurate measurement of long-range heteronuclear coupling
constants: Low-power composite CPMG HSQMBC experiment, Magn. Reson. Chem.,
49, 106–110, https://doi.org/10.1002/mrc.2717, 2011.
Castañar, L. and Parella, T.: Broadband 1H homodecoupled NMR
experiments: recent developments, methods and applications, Magn. Reson. Chem., 53, 399–426, https://doi.org/10.1002/mrc.4238, 2015.
Castañar, L., Saurí, J., Williamson, R. T., Virgili, A., and
Parella, T.: Pure In-Phase Heteronuclear Correlation NMR Experiments, Angew.
Chem. Int. Ed., 53, 8379–8382, https://doi.org/10.1002/anie.201404136,
2014.
Charlier, C., NMRTeamTBI, and Millard, P.: NMRTeamTBI/VirtualDecoupling: Virtual Decoupling v1.0 (main), Zenodo [code], https://doi.org/10.5281/zenodo.5163919, 2021.
Cox, N., Millard, P., Charlier, C., and Lippens, G.: Improved NMR Detection
of Phospho-Metabolites in a Complex Mixture, Anal. Chem., 93, 4818–4824,
https://doi.org/10.1021/acs.analchem.0c04056, 2021.
Dickinson, W. C.: Dependence of the F19 Nuclear Resonance Position on Chemical Compound, Phys. Rev., 77, 736–737,
https://doi.org/10.1103/PhysRev.77.736.2, 1950.
Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A.
N., Raftery, D., Alahmari, F., Jaremko, L., Jaremko, M., and Wishart, D. S.:
NMR Spectroscopy for Metabolomics Research, Metabolites, 9, 123,
https://doi.org/10.3390/metabo9070123, 2019.
Enthart, A., Freudenberger, J. C., Furrer, J., Kessler, H., and Luy, B.: The
CLIP/CLAP-HSQC: Pure absorptive spectra for the measurement of one-bond
couplings, J. Magn. Reson., 192, 314–322,
https://doi.org/10.1016/j.jmr.2008.03.009, 2008.
Foroozandeh, M., Adams, R. W., Meharry, N. J., Jeannerat, D., Nilsson, M.,
and Morris, G. A.: Ultrahigh-resolution NMR spectroscopy, Angew. Chem. Int.
Ed. Engl., 53, 6990–6992, https://doi.org/10.1002/anie.201404111, 2014.
Guennec, A. L., Giraudeau, P., and Caldarelli, S.: Evaluation of Fast 2D NMR
for Metabolomics, Anal. Chem., 86, 5946–5954,
https://doi.org/10.1021/ac500966e, 2014.
Gutowsky, H. S. and McCall, D. W.: Nuclear Magnetic Resonance Fine Structure
in Liquids, Phys. Rev., 82, 748–749,
https://doi.org/10.1103/PhysRev.82.748, 1951.
Helmus, J. J. and Jaroniec, C. P.: Nmrglue: an open source Python package
for the analysis of multidimensional NMR data, J. Biomol. NMR, 55, 355–367,
https://doi.org/10.1007/s10858-013-9718-x, 2013.
Jeener, J. and Alewaeters, G.: “Pulse pair technique in high resolution
NMR” a reprint of the historical 1971 lecture notes on two-dimensional
spectroscopy, Prog. Nucl. Mag. Res. Sp., 94–95,
75–80, https://doi.org/10.1016/j.pnmrs.2016.03.002, 2016.
Karunanithy, G., Mackenzie, H., and Hansen, F.: Virtual Homonuclear
Decoupling in Direct Detection NMR Experiments using Deep Neural Networks, ChemRxiv, Cambridge Open Engage, Cambridge, UK,
https://doi.org/10.26434/chemrxiv.14269463.v1, in review, 2021.
Kessler, H., Müller, A., and Oschkinat, H.: Differences andsums of
traces within,COSY spectra (DISCO) for the extraction of coupling constants:
“Decoupling” after the measurement, Magn. Reson. Chem., 23, 844–852,
https://doi.org/10.1002/mrc.1260231012, 1985.
Kobzar, K., Skinner, T. E., Khaneja, N., Glaser, S. J., and Luy, B.:
Exploring the limits of broadband excitation and inversion pulses, J. Magn. Reson., 170, 236–243, https://doi.org/10.1016/j.jmr.2004.06.017, 2004.
Kövér, K. E., Batta, G., and Fehér, K.: Accurate measurement of
long-range heteronuclear coupling constants from undistorted multiplets of
an enhanced CPMG-HSQMBC experiment, J. Magn. Reson., 181,
89–97, https://doi.org/10.1016/j.jmr.2006.03.015, 2006.
Koźmiński, W.: Simplified Multiplet Pattern HSQC-TOCSY Experiment
for Accurate Determination of Long-Range Heteronuclear Coupling Constants,
J. Magn. Reson., 137, 408–412,
https://doi.org/10.1006/jmre.1998.1700, 1999.
Kupče, Ē.: Perspectives of adiabatic decoupling in liquids, J. Magn.
Reson., 318, 106799, https://doi.org/10.1016/j.jmr.2020.106799, 2020.
Live, D., Armitage, I. M., Dalgarno, D. C., and Cowburn, D.: Two-Dimensional
1H-113Cd Chemical-Shift Correlation Maps by 1H-Detected Multiple-Quantum NMR in Metal Complexes and Metalloproteins, J. Am. Chem. Soc., 107, 1775–1777, https://doi.org/10.1021/ja00292a062, 1985.
Luy, B., Kobzar, K., Skinner, T. E., Khaneja, N., and Glaser, S. J.:
Construction of universal rotations from point-to-point transformations,
J. Magn. Reson., 176, 179–186,
https://doi.org/10.1016/j.jmr.2005.06.002, 2005.
Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B.
D., Wright, P. E., and Wüthrich, K.: Recommendations for the
presentation of NMR structures of proteins and nucleic
acids–IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of
data bases of protein and nucleic acid structures determined by NMR
spectroscopy, Eur. J. Biochem., 256, 1–15, 1998.
Maudsley, A. A. and Ernst, R. R.: Indirect detection of magnetic resonance
by heteronuclear two-dimensional spectroscopy, Chem. Phys. Lett., 50, 368–372, https://doi.org/10.1016/0009-2614(77)80345-X, 1977.
Meissner, A., Duus, J. ø., and Sørensen, O. W.: Spin-State-Selective
Excitation. Application for E.COSY-Type Measurement ofJHHCoupling Constants,
J. Magn. Reson., 128, 92–97,
https://doi.org/10.1006/jmre.1997.1213, 1997.
Moreno, A., Hansen, K. Ø., and Isaksson, J.: CSSF-CLIP-HSQMBC:
measurement of heteronuclear coupling constants in severely crowded spectral
regions, RSC Adv., 9, 36082–36087, https://doi.org/10.1039/C9RA04118D,
2019.
Morris, G. A. and Freeman, R.: Enhancement of nuclear magnetic resonance
signals by polarization transfer, J. Am. Chem. Soc., 101, 760–762, 1979.
Nuzillard, J. M. and Bernassau, J. M.: A DISCO Approach to the Measurement
of Heteronuclear Long-Range Coupling Constants, J. Magn. Reson. B, 103, 284–287, https://doi.org/10.1006/jmrb.1994.1042,
1994.
Oschkinat, H. and Freeman, R.: Fine structure in two-dimensional NMR
correlation spectroscopy, J. Magn. Reson., 60,
164–169, https://doi.org/10.1016/0022-2364(84)90044-1, 1984.
Pell, A. J. and Keeler, J.: Two-dimensional J-spectra with absorption-mode
lineshapes, J. Magn. Reson., 189, 293–299,
https://doi.org/10.1016/j.jmr.2007.09.002, 2007.
Proctor, W. G. and Yu, F. C.: The Dependence of a Nuclear Magnetic Resonance
Frequency upon Chemical Compound, Phys. Rev., 77, 717–717,
https://doi.org/10.1103/PhysRev.77.717, 1950.
Prud'homme, S. M., Hani, Y. M. I., Cox, N., Lippens, G., Nuzillard, J.-M.,
and Geffard, A.: The Zebra Mussel (Dreissena polymorpha) as a Model Organism
for Ecotoxicological Studies: A Prior 1H NMR Spectrum Interpretation of a Whole Body Extract for Metabolism Monitoring, Metabolites, 10, 256,
https://doi.org/10.3390/metabo10060256, 2020.
Purcell, E. M., Torrey, H. C., and Pound, R. V.: Resonance Absorption by
Nuclear Magnetic Moments in a Solid, Phys. Rev., 69, 37–38,
https://doi.org/10.1103/PhysRev.69.37, 1946.
Ramsey, N. F.: Magnetic Shielding of Nuclei in Molecules, Phys. Rev., 78,
699–703, https://doi.org/10.1103/PhysRev.78.699, 1950.
Roberts, M. F., Vidusek, D. A., and Bodenhausen, G.: Adducts of ethylmercury
phosphate with amino acids studied by indirect detection of 199Hg NMR, FEBS Lett., 117, 311–314, https://doi.org/10.1016/0014-5793(80)80969-0, 1980.
Saurí, J., Parella, T., and Espinosa, J. F.: CLIP-HSQMBC: easy
measurement of small proton–carbon coupling constants in organic molecules,
Org. Biomol. Chem., 11, 4473, https://doi.org/10.1039/c3ob40675j, 2013.
Schätzlein, M. P., Becker, J., Schulze-Sünninghausen, D.,
Pineda-Lucena, A., Herance, J. R., and Luy, B.: Rapid two-dimensional
ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: application
to a 13C-enriched cancer cell model treated with gold nanoparticles, Anal. Bioanal. Chem., 410, 2793–2804, https://doi.org/10.1007/s00216-018-0961-6,
2018.
Schlippenbach, T. von, Oefner, P. J., and Gronwald, W.: Systematic
Evaluation of Non-Uniform Sampling Parameters in the Targeted Analysis of
Urine Metabolites by 1H,1H 2D NMR Spectroscopy, Sci. Rep., 8, 4249,
https://doi.org/10.1038/s41598-018-22541-0, 2018.
Tal, A. and Frydman, L.: Single-scan multidimensional magnetic resonance,
Prog. Nucl. Mag. Res. Sp., 57, 241–292,
https://doi.org/10.1016/j.pnmrs.2010.04.001, 2010.
Tiainen, M., Maaheimo, H., Soininen, P., and Laatikainen, R.: 13 C
isotope effects on 1 H chemical shifts: NMR spectral analysis of
13 C-labelled D-glucose and some 13 C-labelled amino
acids: 13 C isotope effects on 1 H chemical shifts, Magn. Reson.
Chem., 48, 117–122, https://doi.org/10.1002/mrc.2553, 2010.
Timári, I., Kaltschnee, L., Raics, M. H., Roth, F., Bell, N. G. A.,
Adams, R. W., Nilsson, M., Uhrín, D., Morris, G. A., Thiele, C. M., and
Kövér, K. E.: Real-time broadband proton-homodecoupled
CLIP/CLAP-HSQC for automated measurement of heteronuclear one-bond coupling
constants, RSC Adv., 6, 87848–87855, https://doi.org/10.1039/C6RA14329F,
2016.
Titman, J. J., Neuhaus, D., and Keeler, J.: Measurement of long-range
heteronuclear coupling constants, J. Magn. Reson., 85,
111–131, https://doi.org/10.1016/0022-2364(89)90324-7, 1989.
Watanabe, M., Meyer, K. A., Jackson, T. M., Schock, T. B., Johnson, W. E.,
and Bearden, D. W.: Application of NMR-based metabolomics for environmental
assessment in the Great Lakes using zebra mussel (Dreissena polymorpha),
Metabolomics, 11, 1302–1315, https://doi.org/10.1007/s11306-015-0789-4,
2015.
Williamson, R. T., Márquez, B. L., Gerwick, W. H., and Kövér, K.
E.: One- and two-dimensional gradient-selected HSQMBC NMR experiments for
the efficient analysis of long-range heteronuclear coupling constants, 38,
265–273, 2000.
Wishart, D. S.: NMR metabolomics: A look ahead, J. Magn. Reson., 306, 155–161, https://doi.org/10.1016/j.jmr.2019.07.013, 2019.
Wollborn, U. and Leibfritz, D.: Measurements of heteronuclear long-range
coupling constants from inverse homonuclear 2D NMR spectra, J. Magn. Reson., 98, 142–146,
https://doi.org/10.1016/0022-2364(92)90117-P, 1992.
Zangger, K. and Sterk, H.: Homonuclear Broadband-Decoupled NMR Spectra,
J. Magn. Reson., 124, 486–489,
https://doi.org/10.1006/jmre.1996.1063, 1997.
Zhang, B., Powers, R., and O'Day, E. M.: Evaluation of Non-Uniform Sampling
2D 1H–13C HSQC Spectra for Semi-Quantitative Metabolomics, Metabolites, 10, 203, https://doi.org/10.3390/metabo10050203, 2020.
Short summary
The HSQC experiment developed by Bodenhausen and Ruben is a cornerstone for modern NMR. When used in the field of metabolomics, the common practice of decoupling in the proton dimension limits the acquisition time and hence the resolution. Here, we present a virtual decoupling method to maintain both spectral simplicity and resolution, and demonstrate how it increases information content with the zebra mussel metabolome as an example.
The HSQC experiment developed by Bodenhausen and Ruben is a cornerstone for modern NMR. When...
Special issue