Articles | Volume 2, issue 2
https://doi.org/10.5194/mr-2-643-2021
https://doi.org/10.5194/mr-2-643-2021
Research article
 | 
20 Aug 2021
Research article |  | 20 Aug 2021

Solid-state 1H spin polarimetry by 13CH3 nuclear magnetic resonance

Stuart J. Elliott, Quentin Stern, and Sami Jannin

Related authors

Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems
Thomas R. Eykyn, Stuart J. Elliott, and Philip W. Kuchel
Magn. Reson., 2, 421–446, https://doi.org/10.5194/mr-2-421-2021,https://doi.org/10.5194/mr-2-421-2021, 2021
Short summary
Dipolar order mediated 1H → 13C cross-polarization for dissolution-dynamic nuclear polarization
Stuart J. Elliott, Samuel F. Cousin, Quentin Chappuis, Olivier Cala, Morgan Ceillier, Aurélien Bornet, and Sami Jannin
Magn. Reson., 1, 89–96, https://doi.org/10.5194/mr-1-89-2020,https://doi.org/10.5194/mr-1-89-2020, 2020
Short summary

Related subject area

Field: Hyperpolarization | Topic: Applications – small molecules
Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples
Arnab Dey, Benoît Charrier, Karine Lemaitre, Victor Ribay, Dmitry Eshchenko, Marc Schnell, Roberto Melzi, Quentin Stern, Samuel F. Cousin, James G. Kempf, Sami Jannin, Jean-Nicolas Dumez, and Patrick Giraudeau
Magn. Reson., 3, 183–202, https://doi.org/10.5194/mr-3-183-2022,https://doi.org/10.5194/mr-3-183-2022, 2022
Short summary
The relation between crystal structure and the occurrence of quantum-rotor-induced polarization
Corinna Dietrich, Julia Wissel, Oliver Lorenz, Arafat Hossain Khan, Marko Bertmer, Somayeh Khazaei, Daniel Sebastiani, and Jörg Matysik
Magn. Reson., 2, 751–763, https://doi.org/10.5194/mr-2-751-2021,https://doi.org/10.5194/mr-2-751-2021, 2021
Short summary
129Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer
Kévin Chighine, Estelle Léonce, Céline Boutin, Hervé Desvaux, and Patrick Berthault
Magn. Reson., 2, 409–420, https://doi.org/10.5194/mr-2-409-2021,https://doi.org/10.5194/mr-2-409-2021, 2021
Short summary
Non-classical disproportionation revealed by photo-chemically induced dynamic nuclear polarization NMR
Jakob Wörner, Jing Chen, Adelbert Bacher, and Stefan Weber
Magn. Reson., 2, 281–290, https://doi.org/10.5194/mr-2-281-2021,https://doi.org/10.5194/mr-2-281-2021, 2021
Short summary
Pd-based bimetallic catalysts for parahydrogen-induced polarization in heterogeneous hydrogenations
Dudari B. Burueva, Aleksandr Y. Stakheev, and Igor V. Koptyug
Magn. Reson., 2, 93–103, https://doi.org/10.5194/mr-2-93-2021,https://doi.org/10.5194/mr-2-93-2021, 2021
Short summary

Cited articles

Abragam, A., and Goldman, M.: Principles of dynamic nuclear polarisation, Rep. Prog. Phys., 41, 395–467, https://doi.org/10.1088/0034-4885/41/3/002, 1978. 
Aghelnejad, B., Marhabaie, S., Baudin, M., Bodenhausen, G., and Carnevale, D.: Spin Thermometry: A Straightforward Measure of Millikelvin Deuterium Spin Temperatures Achieved by Dynamic Nuclear Polarization, J. Phys. Chem. Lett., 11, 3219–3225, https://doi.org/10.1021/acs.jpclett.0c00713, 2020. 
Ardenkjær-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Golman, K.: Increase in signal-to-noise ratio of > 10 000 times in liquid-state NMR, P. Natl. Acad. Sci. USA, 100, 10158–10163, https://doi.org/10.1073/pnas.1733835100, 2003. 
Bornet, A., Milani, J., Vuichoud, B., Perez Linde, A. J., Bodenhausen, G., and Jannin, S.: Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization, Chem. Phys. Lett., 602, 63–67, https://doi.org/10.1016/j.cplett.2014.04.013, 2014. 
Bornet, A., Pinon, A. C., Jhajharia, A., Baudin, M., Ji, X., Emsley, L., Bodenhausen, G., Ardenkjær-Larsen, J. H., and Jannin, S.: Microwave-gated dynamic nuclear polarization, Phys. Chem. Chem. Phys., 18, 30530–30535, https://doi.org/10.1039/C6CP05587G, 2016. 
Download
Short summary
A straightforward line shape analysis of the 13C NMR spectra of [2-13C]sodium acetate can be used to indirectly evaluate the 13H polarization of the CH3 group and likely entire samples in the case of rapid and homogeneous 13H–1H spin diffusion. The results are potentially advantageous for polarizers that lack 1H radiofrequency hardware, measurements that are influenced by radiation damping or large background signals, or where acquisition of thermal equilibrium spectra is not feasible.