Articles | Volume 4, issue 1
https://doi.org/10.5194/mr-4-129-2023
https://doi.org/10.5194/mr-4-129-2023
Research article
 | 
05 Jun 2023
Research article |  | 05 Jun 2023

Non-perturbative treatment of the solid effect of dynamic nuclear polarization

Deniz Sezer

Related authors

The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
The solid effect of dynamic nuclear polarization in liquids
Deniz Sezer
Magn. Reson., 4, 153–174, https://doi.org/10.5194/mr-4-153-2023,https://doi.org/10.5194/mr-4-153-2023, 2023
Short summary

Related subject area

Field: Hyperpolarization | Topic: Theory
The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
The solid effect of dynamic nuclear polarization in liquids
Deniz Sezer
Magn. Reson., 4, 153–174, https://doi.org/10.5194/mr-4-153-2023,https://doi.org/10.5194/mr-4-153-2023, 2023
Short summary
Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems
Thomas R. Eykyn, Stuart J. Elliott, and Philip W. Kuchel
Magn. Reson., 2, 421–446, https://doi.org/10.5194/mr-2-421-2021,https://doi.org/10.5194/mr-2-421-2021, 2021
Short summary
Hyperpolarization and the physical boundary of Liouville space
Malcolm H. Levitt and Christian Bengs
Magn. Reson., 2, 395–407, https://doi.org/10.5194/mr-2-395-2021,https://doi.org/10.5194/mr-2-395-2021, 2021
Short summary
Representation of population exchange at level anti-crossings
Bogdan A. Rodin and Konstantin L. Ivanov
Magn. Reson., 1, 347–365, https://doi.org/10.5194/mr-1-347-2020,https://doi.org/10.5194/mr-1-347-2020, 2020
Short summary

Cited articles

Abragam, A.: Overhauser Effect in Nonmetals, Phys. Rev., 98, 1729–1735, https://doi.org/10.1103/PhysRev.98.1729, 1955. a, b, c, d
Abragam, A.: The Principles of Nuclear Magnetism, Oxford University Press, New York, ISBN 978 0 19 852014 6, 1961. a, b, c, d, e
Abragam, A. and Goldman, M.: Principles of dynamic nuclear polarisation, Rep. Prog. Phys., 41, 395, https://doi.org/10.1088/0034-4885/41/3/002, 1978. a
Abragam, A. and Proctor, W. G.: Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides, Compt. Rend., 246, 2253–2256, 1958. a, b, c, d, e, f
Barker, W. A.: Dynamic Nuclear Polarization, Rev. Modern Phys., 34, 173–185, https://doi.org/10.1103/RevModPhys.34.173, 1962. a
Short summary
Since its discovery 65 years ago, the solid-state dynamic nuclear polarization effect has been rationalized in terms of mixing of the Zeeman energy levels. Before becoming aware of this explanation, Erb, Motchane and Uebersfeld proposed a dynamical equation to make sense of their experiments. Here we provide a formal justification of their phenomenological equation. The result is a different way of thinking about the solid-state effect, with novel implications for the effect in liquids.