Articles | Volume 4, issue 1
https://doi.org/10.5194/mr-4-153-2023
https://doi.org/10.5194/mr-4-153-2023
Research article
 | 
05 Jun 2023
Research article |  | 05 Jun 2023

The solid effect of dynamic nuclear polarization in liquids

Deniz Sezer

Related authors

The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
Non-perturbative treatment of the solid effect of dynamic nuclear polarization
Deniz Sezer
Magn. Reson., 4, 129–152, https://doi.org/10.5194/mr-4-129-2023,https://doi.org/10.5194/mr-4-129-2023, 2023
Short summary

Related subject area

Field: Hyperpolarization | Topic: Theory
The solid effect of dynamic nuclear polarization in liquids – accounting for g-tensor anisotropy at high magnetic fields
Deniz Sezer, Danhua Dai, and Thomas F. Prisner
Magn. Reson., 4, 243–269, https://doi.org/10.5194/mr-4-243-2023,https://doi.org/10.5194/mr-4-243-2023, 2023
Short summary
Non-perturbative treatment of the solid effect of dynamic nuclear polarization
Deniz Sezer
Magn. Reson., 4, 129–152, https://doi.org/10.5194/mr-4-129-2023,https://doi.org/10.5194/mr-4-129-2023, 2023
Short summary
Extended Bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems
Thomas R. Eykyn, Stuart J. Elliott, and Philip W. Kuchel
Magn. Reson., 2, 421–446, https://doi.org/10.5194/mr-2-421-2021,https://doi.org/10.5194/mr-2-421-2021, 2021
Short summary
Hyperpolarization and the physical boundary of Liouville space
Malcolm H. Levitt and Christian Bengs
Magn. Reson., 2, 395–407, https://doi.org/10.5194/mr-2-395-2021,https://doi.org/10.5194/mr-2-395-2021, 2021
Short summary
Representation of population exchange at level anti-crossings
Bogdan A. Rodin and Konstantin L. Ivanov
Magn. Reson., 1, 347–365, https://doi.org/10.5194/mr-1-347-2020,https://doi.org/10.5194/mr-1-347-2020, 2020
Short summary

Cited articles

Abragam, A.: The Principles of Nuclear Magnetism, Oxford University Press, New York, ISBN 978 0 19 852014 6, 1961. a, b, c
Abragam, A. and Proctor, W. G.: Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides, Compt. rend., 246, 2253–2256, 1958. a
Anderson, P. W.: A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion, J. Phys. Soc. Jpn., 9, 316–339, https://doi.org/10.1143/JPSJ.9.316, 1954. a
Ayant, Y., Belorizky, E., Alizon, J., and Gallice, J.: Calcul des densit'es spectrales r'esultant d'un mouvement al'eatoire de translation en relaxation par interaction dipolaire magn'etique dans les liquides, J. Phys., 36, 991–1004, 1975. a, b, c, d, e
Delage-Laurin, L., Palani, R. S., Golota, N., Mardini, M., Ouyang, Y., Tan, K. O., Swager, T. M., and Griffin, R. G.: Overhauser Dynamic Nuclear Polarization with Selectively Deuterated BDPA Radicals, J. Am. Chem. Soc., 143, 20281–20290, https://doi.org/10.1021/jacs.1c09406, 2021. a
Short summary
We show that the field profile of the solid effect in liquids is rich in dynamical information, including about timescales of molecular diffusion. We develop a general theoretical framework for extracting this information through quantitative fits to the experimental data. Unusual peaks in the enhancement field profile, which resemble thermal mixing but are not related to it, are demonstrated to arise in liquids under some conditions. These additionally restrict the dynamical parameters.