Benn, R., Brenneke, H., and Reinhardt, R.-D.:
103Rh-NMR Bei 9,4
T – Verbesserter Nachweis Infolge Verkürzter Relaxationszeiten Und Selektivem Polarisationstransfer /
103Rh NMR at 9.4
T – Improved Signal Detection Due to Shortened Relaxation Times and Selective Polarisation Transfer, Z. Naturforsch. B, 40, 1763–1765, 1985.
a,
b
Burum, D. P. and Ernst, R. R.: Net Polarization Transfer via a J-ordered State for Signal Enhancement of Low-Sensitivity Nuclei, J. Magn. Reson., 39, 163–168, 1980.
a,
b,
c
Caló, F. P., Bistoni, G., Auer, A. A., Leutzsch, M., and Fürstner, A.: Triple Resonance Experiments for the Rapid Detection of
103Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth–Rhodium Paddlewheel Complexes, J. Am. Chem. Soc., 143, 12473–12479, 2021.
a,
b
Carlton, L.: Chapter 3 - Rhodium-103 NMR, in: Annual Reports on NMR Spectroscopy, vol. 63, edited by: Webb, G. A., Academic Press,
https://doi.org/10.1016/S0066-4103(07)63003-8, 49–178, 2008.
a,
b
Carravetta, M., Edén, M., Zhao, X., Brinkmann, A., and Levitt, M. H.: Symmetry Principles for the Design of Radiofrequency Pulse Sequences in the Nuclear Magnetic Resonance of Rotating Solids, Chem. Phys. Lett., 321, 205–215, 2000. a
Chan, A. P., Parkinson, J. A., Rosair, G. M., and Welch, A. J.: Bis(Phosphine)Hydridorhodacarborane Derivatives of 1,1
′-Bis(Ortho-Carborane) and Their Catalysis of Alkene Isomerization and the Hydrosilylation of Acetophenone, Inorg. Chem., 59, 2011–2023, 2020. a
Chingas, G. C., Garroway, A. N., Bertrand, R. D., and Moniz, W. B.: Zero Quantum NMR in the Rotating Frame: J Cross Polarization in AXN Systems, J. Chem. Phys., 74, 127–156, 1981.
a,
b
Choi, S.-I., Lee, S. R., Ma, C., Oliy, B., Luo, M., Chi, M., and Xia, Y.: Facile Synthesis of Rhodium Icosahedra with Controlled Sizes up to 12
Nm, ChemNanoMat, 2, 61–66, 2016. a
Harbor-Collins, H.: Dataset in support of the paper “H enhanced 103Rh NMR spectroscopy and relaxometry of 103Rhacac in solution”, University of Southampton [data set], 2024. a
Crocker, C., John Errington, R., S. McDonald, W., J. Odell, K., L. Shaw, B., and J. Goodfellow, R.: Rapid Reversible Fission of a C–H Bond in a Metal Complex: X-Ray Crystal Structure of [
], J. Chem. Soc. Chem. Commun., 0, 498–499, 1979. a
Cummins, H. K., Llewellyn, G., and Jones, J. A.: Tackling Systematic Errors in Quantum Logic Gates with Composite Rotations, Phys. Rev. A, 67, 042308, 2003.
a,
b
Doddrell, D. M., Pegg, D. T., Brooks, W., and Bendall, M. R.: Enhancement of Silicon-29 or Tin-119 NMR Signals in the Compounds
M(CH3)(n)Cl(4−n)M = Silicon or Tin, n
= 4, 3, 2) Using Proton Polarization Transfer. Dependence of the Enhancement on the Number of Scalar Coupled Protons, J. Am. Chem. Soc., 103, 727–728, 1981. a
Gullion, T.: The Effect of Amplitude Imbalance on Compensated Carr–Purcell Sequences, J. Magn. Reson., Series A, 101, 320–323, 1993. a
Gullion, T., Baker, D. B., and Conradi, M. S.: New, Compensated Carr–Purcell Sequences, J. Magn. Reson. (1969), 89, 479–484, 1990. a
Harbor-Collins, H., Sabba, M., Moustafa, G., Legrady, B., Soundararajan, M., Leutzsch, M., and Levitt, M. H.: The
103Rh NMR Spectroscopy and Relaxometry of the Rhodium Formate Paddlewheel Complex, J. Chem. Phys., 159, 104307,
https://doi.org/10.1063/5.0165830, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Harbor-Collins, H., Sabba, M., Bengs, C., Moustafa, G., Leutzsch, M., and Levitt, M. H.: NMR Spectroscopy of a 18O-labeled Rhodium Paddlewheel Complex: Isotope Shifts,
103Rh–
103Rh Spin–Spin Coupling, and
103Rh Singlet NMR, J. Chem. Phys., 160, 014305, 2024.
a,
b
Heaton, B. T., Strona, L., Della Pergola, R., L. Vidal, J., and C. Schoening, R.: Multinuclear Variable-Temperature Nuclear Magnetic Resonance Study of Rhodium Carbonyl Clusters Containing Encapsulated Heteroatoms: Ligand and Metal Polyhedral Rearrangements, J. Chem. Soc. Dalton, 0, 1941–1947, 1983. a
Herberhold, M., Daniel, T., Daschner, D., Milius, W., and Wrackmeyer, B.: Mononuclear Half-Sandwich Rhodium Complexes Containing Phenylchalcogenolato Ligands: A Multinuclear (
1H,
13C,
31P,
77Se,
103Rh,
125Te) Magnetic Resonance Study, J. Organomet. Chem., 585, 234–240, 1999. a
Holmes, S. T., Schoenzart, J., Philips, A., Kimball, J., Termos, S., R Altenhof, A., Xu, Y., A. O'Keefe, C., Autschbach, J., and Schurko, R.: Structure and Bonding in Rhodium Coordination Compounds: A
103Rh Solid-State NMR and Relativistic DFT Study, Chem. Sci.,
https://doi.org/10.1039/D3SC06026H, 2023.
a,
b
Hubbard, P. S.: Theory of Nuclear Magnetic Relaxation by Spin-Rotational Interactions in Liquids, Phys. Rev., 131, 1155–1165, 1963. a
Levitt, M. H.: Heteronuclear Cross Polarization in Liquid-state Nuclear Magnetic Resonance: Mismatch Compensation and Relaxation Behavior, J. Chem. Phys., 94, 30–38, 1991. a
Lutz, M. D. R., Zhong, H., Trapp, N., and Morandi, B.: Synthesis and Reversible
H2 Activation by Coordinatively Unsaturated Rhodium NHC Complexes, Helv. Chim. Acta, 106, e202200199,
https://doi.org/10.1002/hlca.202200199, 2023.
a
Maurer, E., Rieker, S., Schollbach, M., Schwenk, A., Egolf, T., and von Philipsborn, W.: Direct Observation of
103Rh-Chemical Shifts in Mono- and Dinuclear Olefin Complexes, Helv. Chim. Acta, 65, 26–45, 1982. a
Pegg, D. T., Doddrell, D. M., Brooks, W. M., and Robin Bendall, M.: Proton Polarization Transfer Enhancement for a Nucleus with Arbitrary Spin Quantum Number from
n Scalar Coupled Protons for Arbitrary Preparation Times, J. Magn. Reson. (1969), 44, 32–40, 1981. a
Peng, J. W., Thanabal, V., and Wagner, G.: Improved Accuracy of Heteronuclear Transverse Relaxation Time Measurements in Macromolecules. Elimination of Antiphase Contributions, J. Magn. Reson. (1969), 95, 421–427, 1991. a
Rösler, T., Ehmann, K. R., Köhnke, K., Leutzsch, M., Wessel, N., Vorholt, A. J., and Leitner, W.: Reductive Hydroformylation with a Selective and Highly Active Rhodium Amine System, J. Catal., 400, 234–243, 2021. a
Sabba, M., Wili, N., Bengs, C., Whipham, J. W., Brown, L. J., and Levitt, M. H.: Symmetry-Based Singlet–Triplet Excitation in Solution Nuclear Magnetic Resonance, J. Chem. Phys., 157, 134302, 2022.
a,
b
Samultsev, D. O., Semenov, V. A., and Krivdin, L. B.: Four-Component Relativistic Calculations of NMR Shielding Constants of the Transition Metal Complexes. Part 1: Pentaammines of Cobalt, Rhodium, and Iridium, Magn. Reson. Chem., 60, 463–468, 2022. a
Schwartz, I., Scheuer, J., Tratzmiller, B., Müller, S., Chen, Q., Dhand, I., Wang, Z.-Y., Müller, C., Naydenov, B., Jelezko, F., and Plenio, M. B.: Robust Optical Polarization of Nuclear Spin Baths Using Hamiltonian Engineering of Nitrogen-Vacancy Center Quantum Dynamics, Sci. Adv., 4,
https://doi.org/10.1126/sciadv.aat8978, 2018.
a,
b
Sheng Loong Tan, N., Nealon, G. L., Moggach, S. A., Lynam, J. M., Ogden, M. I., Massi, M., and Lowe, A. B.: (
η4-Tetrafluorobenzobarrelene)-
η1-((Tri-4-Fluorophenyl)Phosphine))-
η1-(2-Phenylphenyl)Rhodium(I): A Catalyst for the Living Polymerization of Phenylacetylenes, Macromolecules, 54, 6191–6203, 2021. a
Widemann, M., Eichele, K., Schubert, H., Sindlinger, C. P., Klenner, S., Pöttgen, R., and Wesemann, L.: Synthesis and Hydrogenation of Heavy Homologues of Rhodium Carbynes: [
(Me3P)2(Ph3P)Rh ≡ E-
Ar∗] (
E = Sn,
Pb), Angew. Chem. Int. Ed., 60, 5882–5889, 2021. a
Wiedemair, M., Kopacka, H., Wurst, K., Müller, T., Eichele, K., Vanicek, S., Hohloch, S., and Bildstein, B.: Rhodocenium Functionalization Enabled by Half-Sandwich Capping, Zincke Reaction, Diazoniation and Sandmeyer Chemistry, Eur. J. Inorg. Chem., 2021, 3305–3313, 2021. a
Wimperis, S.: Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments, J. Magn. Reson., Series A, 109, 221–231, 1994.
a,
b,
c
Zhang, Y., Grass, M. E., Habas, S. E., Tao, F., Zhang, T., Yang, P., and Somorjai, G. A.: One-Step Polyol Synthesis and Langmuir–Blodgett Monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures, J. Phys. Chem. C, 111, 12243–12253, 2007. a
Zhukov, I. V., S. Kiryutin, A., V. Yurkovskaya, A., A. Grishin, Y., Vieth, H.-M., and L. Ivanov, K.: Field-Cycling NMR Experiments in an Ultra-Wide Magnetic Field Range: Relaxation and Coherent Polarization Transfer, Phys. Chem. Chem. Phys., 20, 12396–12405, 2018. a